gonum.org/v1/gonum@v0.15.1-0.20240517103525-f853624cb1bb/mat/lu.go (about)

     1  // Copyright ©2013 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package mat
     6  
     7  import (
     8  	"math"
     9  
    10  	"gonum.org/v1/gonum/blas"
    11  	"gonum.org/v1/gonum/blas/blas64"
    12  	"gonum.org/v1/gonum/floats"
    13  	"gonum.org/v1/gonum/lapack"
    14  	"gonum.org/v1/gonum/lapack/lapack64"
    15  )
    16  
    17  const (
    18  	badSliceLength = "mat: improper slice length"
    19  	badLU          = "mat: invalid LU factorization"
    20  )
    21  
    22  // LU is a square n×n matrix represented by its LU factorization with partial
    23  // pivoting.
    24  //
    25  // The factorization has the form
    26  //
    27  //	A = P * L * U
    28  //
    29  // where P is a permutation matrix, L is lower triangular with unit diagonal
    30  // elements, and U is upper triangular.
    31  //
    32  // Note that this matrix representation is useful for certain operations, in
    33  // particular for solving linear systems of equations. It is very inefficient at
    34  // other operations, in particular At is slow.
    35  type LU struct {
    36  	lu    *Dense
    37  	swaps []int
    38  	piv   []int
    39  	cond  float64
    40  	ok    bool // Whether A is nonsingular
    41  }
    42  
    43  var _ Matrix = (*LU)(nil)
    44  
    45  // Dims returns the dimensions of the matrix A.
    46  func (lu *LU) Dims() (r, c int) {
    47  	if lu.lu == nil {
    48  		return 0, 0
    49  	}
    50  	return lu.lu.Dims()
    51  }
    52  
    53  // At returns the element of A at row i, column j.
    54  func (lu *LU) At(i, j int) float64 {
    55  	n, _ := lu.Dims()
    56  	if uint(i) >= uint(n) {
    57  		panic(ErrRowAccess)
    58  	}
    59  	if uint(j) >= uint(n) {
    60  		panic(ErrColAccess)
    61  	}
    62  
    63  	i = lu.piv[i]
    64  	var val float64
    65  	for k := 0; k < min(i, j+1); k++ {
    66  		val += lu.lu.at(i, k) * lu.lu.at(k, j)
    67  	}
    68  	if i <= j {
    69  		val += lu.lu.at(i, j)
    70  	}
    71  	return val
    72  }
    73  
    74  // T performs an implicit transpose by returning the receiver inside a
    75  // Transpose.
    76  func (lu *LU) T() Matrix {
    77  	return Transpose{lu}
    78  }
    79  
    80  // updateCond updates the stored condition number of the matrix. anorm is the
    81  // norm of the original matrix. If anorm is negative it will be estimated.
    82  func (lu *LU) updateCond(anorm float64, norm lapack.MatrixNorm) {
    83  	n := lu.lu.mat.Cols
    84  	work := getFloat64s(4*n, false)
    85  	defer putFloat64s(work)
    86  	iwork := getInts(n, false)
    87  	defer putInts(iwork)
    88  	if anorm < 0 {
    89  		// This is an approximation. By the definition of a norm,
    90  		//  |AB| <= |A| |B|.
    91  		// Since A = L*U, we get for the condition number κ that
    92  		//  κ(A) := |A| |A^-1| = |L*U| |A^-1| <= |L| |U| |A^-1|,
    93  		// so this will overestimate the condition number somewhat.
    94  		// The norm of the original factorized matrix cannot be stored
    95  		// because of update possibilities.
    96  		u := lu.lu.asTriDense(n, blas.NonUnit, blas.Upper)
    97  		l := lu.lu.asTriDense(n, blas.Unit, blas.Lower)
    98  		unorm := lapack64.Lantr(norm, u.mat, work)
    99  		lnorm := lapack64.Lantr(norm, l.mat, work)
   100  		anorm = unorm * lnorm
   101  	}
   102  	v := lapack64.Gecon(norm, lu.lu.mat, anorm, work, iwork)
   103  	lu.cond = 1 / v
   104  }
   105  
   106  // Factorize computes the LU factorization of the square matrix A and stores the
   107  // result in the receiver. The LU decomposition will complete regardless of the
   108  // singularity of a.
   109  //
   110  // The L and U matrix factors can be extracted from the factorization using the
   111  // LTo and UTo methods. The matrix P can be extracted as a row permutation using
   112  // the RowPivots method and applied using Dense.PermuteRows.
   113  func (lu *LU) Factorize(a Matrix) {
   114  	lu.factorize(a, CondNorm)
   115  }
   116  
   117  func (lu *LU) factorize(a Matrix, norm lapack.MatrixNorm) {
   118  	m, n := a.Dims()
   119  	if m != n {
   120  		panic(ErrSquare)
   121  	}
   122  	if lu.lu == nil {
   123  		lu.lu = NewDense(n, n, nil)
   124  	} else {
   125  		lu.lu.Reset()
   126  		lu.lu.reuseAsNonZeroed(n, n)
   127  	}
   128  	lu.lu.Copy(a)
   129  	lu.swaps = useInt(lu.swaps, n)
   130  	lu.piv = useInt(lu.piv, n)
   131  	work := getFloat64s(n, false)
   132  	anorm := lapack64.Lange(norm, lu.lu.mat, work)
   133  	putFloat64s(work)
   134  	lu.ok = lapack64.Getrf(lu.lu.mat, lu.swaps)
   135  	lu.updatePivots(lu.swaps)
   136  	lu.updateCond(anorm, norm)
   137  }
   138  
   139  func (lu *LU) updatePivots(swaps []int) {
   140  	// Replay the sequence of row swaps in order to find the row permutation.
   141  	for i := range lu.piv {
   142  		lu.piv[i] = i
   143  	}
   144  	n, _ := lu.Dims()
   145  	for i := n - 1; i >= 0; i-- {
   146  		v := swaps[i]
   147  		lu.piv[i], lu.piv[v] = lu.piv[v], lu.piv[i]
   148  	}
   149  }
   150  
   151  // isValid returns whether the receiver contains a factorization.
   152  func (lu *LU) isValid() bool {
   153  	return lu.lu != nil && !lu.lu.IsEmpty()
   154  }
   155  
   156  // Cond returns the condition number for the factorized matrix.
   157  // Cond will panic if the receiver does not contain a factorization.
   158  func (lu *LU) Cond() float64 {
   159  	if !lu.isValid() {
   160  		panic(badLU)
   161  	}
   162  	return lu.cond
   163  }
   164  
   165  // Reset resets the factorization so that it can be reused as the receiver of a
   166  // dimensionally restricted operation.
   167  func (lu *LU) Reset() {
   168  	if lu.lu != nil {
   169  		lu.lu.Reset()
   170  	}
   171  	lu.swaps = lu.swaps[:0]
   172  	lu.piv = lu.piv[:0]
   173  }
   174  
   175  func (lu *LU) isZero() bool {
   176  	return len(lu.swaps) == 0
   177  }
   178  
   179  // Det returns the determinant of the matrix that has been factorized. In many
   180  // expressions, using LogDet will be more numerically stable.
   181  // Det will panic if the receiver does not contain a factorization.
   182  func (lu *LU) Det() float64 {
   183  	if !lu.ok {
   184  		return 0
   185  	}
   186  	det, sign := lu.LogDet()
   187  	return math.Exp(det) * sign
   188  }
   189  
   190  // LogDet returns the log of the determinant and the sign of the determinant
   191  // for the matrix that has been factorized. Numerical stability in product and
   192  // division expressions is generally improved by working in log space.
   193  // LogDet will panic if the receiver does not contain a factorization.
   194  func (lu *LU) LogDet() (det float64, sign float64) {
   195  	if !lu.isValid() {
   196  		panic(badLU)
   197  	}
   198  
   199  	_, n := lu.lu.Dims()
   200  	logDiag := getFloat64s(n, false)
   201  	defer putFloat64s(logDiag)
   202  	sign = 1.0
   203  	for i := 0; i < n; i++ {
   204  		v := lu.lu.at(i, i)
   205  		if v < 0 {
   206  			sign *= -1
   207  		}
   208  		if lu.swaps[i] != i {
   209  			sign *= -1
   210  		}
   211  		logDiag[i] = math.Log(math.Abs(v))
   212  	}
   213  	return floats.Sum(logDiag), sign
   214  }
   215  
   216  // RowPivots returns the row permutation that represents the permutation matrix
   217  // P from the LU factorization
   218  //
   219  //	A = P * L * U.
   220  //
   221  // If dst is nil, a new slice is allocated and returned. If dst is not nil and
   222  // the length of dst does not equal the size of the factorized matrix, RowPivots
   223  // will panic. RowPivots will panic if the receiver does not contain a
   224  // factorization.
   225  func (lu *LU) RowPivots(dst []int) []int {
   226  	if !lu.isValid() {
   227  		panic(badLU)
   228  	}
   229  	_, n := lu.lu.Dims()
   230  	if dst == nil {
   231  		dst = make([]int, n)
   232  	}
   233  	if len(dst) != n {
   234  		panic(badSliceLength)
   235  	}
   236  	copy(dst, lu.piv)
   237  	return dst
   238  }
   239  
   240  // Pivot returns the row pivots of the receiver.
   241  //
   242  // Deprecated: Use RowPivots instead.
   243  func (lu *LU) Pivot(dst []int) []int {
   244  	return lu.RowPivots(dst)
   245  }
   246  
   247  // RankOne updates an LU factorization as if a rank-one update had been applied to
   248  // the original matrix A, storing the result into the receiver. That is, if in
   249  // the original LU decomposition P * L * U = A, in the updated decomposition
   250  // P * L' * U' = A + alpha * x * yᵀ.
   251  // RankOne will panic if orig does not contain a factorization.
   252  func (lu *LU) RankOne(orig *LU, alpha float64, x, y Vector) {
   253  	if !orig.isValid() {
   254  		panic(badLU)
   255  	}
   256  
   257  	// RankOne uses algorithm a1 on page 28 of "Multiple-Rank Updates to Matrix
   258  	// Factorizations for Nonlinear Analysis and Circuit Design" by Linzhong Deng.
   259  	// http://web.stanford.edu/group/SOL/dissertations/Linzhong-Deng-thesis.pdf
   260  	_, n := orig.lu.Dims()
   261  	if r, c := x.Dims(); r != n || c != 1 {
   262  		panic(ErrShape)
   263  	}
   264  	if r, c := y.Dims(); r != n || c != 1 {
   265  		panic(ErrShape)
   266  	}
   267  	if orig != lu {
   268  		if lu.isZero() {
   269  			lu.swaps = useInt(lu.swaps, n)
   270  			lu.piv = useInt(lu.piv, n)
   271  			if lu.lu == nil {
   272  				lu.lu = NewDense(n, n, nil)
   273  			} else {
   274  				lu.lu.reuseAsNonZeroed(n, n)
   275  			}
   276  		} else if len(lu.swaps) != n {
   277  			panic(ErrShape)
   278  		}
   279  		copy(lu.swaps, orig.swaps)
   280  		lu.updatePivots(lu.swaps)
   281  		lu.lu.Copy(orig.lu)
   282  	}
   283  
   284  	xs := getFloat64s(n, false)
   285  	defer putFloat64s(xs)
   286  	ys := getFloat64s(n, false)
   287  	defer putFloat64s(ys)
   288  	for i := 0; i < n; i++ {
   289  		xs[i] = x.AtVec(i)
   290  		ys[i] = y.AtVec(i)
   291  	}
   292  
   293  	// Adjust for the pivoting in the LU factorization
   294  	for i, v := range lu.swaps {
   295  		xs[i], xs[v] = xs[v], xs[i]
   296  	}
   297  
   298  	lum := lu.lu.mat
   299  	omega := alpha
   300  	for j := 0; j < n; j++ {
   301  		ujj := lum.Data[j*lum.Stride+j]
   302  		ys[j] /= ujj
   303  		theta := 1 + xs[j]*ys[j]*omega
   304  		beta := omega * ys[j] / theta
   305  		gamma := omega * xs[j]
   306  		omega -= beta * gamma
   307  		lum.Data[j*lum.Stride+j] *= theta
   308  		for i := j + 1; i < n; i++ {
   309  			xs[i] -= lum.Data[i*lum.Stride+j] * xs[j]
   310  			tmp := ys[i]
   311  			ys[i] -= lum.Data[j*lum.Stride+i] * ys[j]
   312  			lum.Data[i*lum.Stride+j] += beta * xs[i]
   313  			lum.Data[j*lum.Stride+i] += gamma * tmp
   314  		}
   315  	}
   316  	lu.updateCond(-1, CondNorm)
   317  }
   318  
   319  // LTo extracts the lower triangular matrix from an LU factorization.
   320  //
   321  // If dst is empty, LTo will resize dst to be a lower-triangular n×n matrix.
   322  // When dst is non-empty, LTo will panic if dst is not n×n or not Lower.
   323  // LTo will also panic if the receiver does not contain a successful
   324  // factorization.
   325  func (lu *LU) LTo(dst *TriDense) *TriDense {
   326  	if !lu.isValid() {
   327  		panic(badLU)
   328  	}
   329  
   330  	_, n := lu.lu.Dims()
   331  	if dst.IsEmpty() {
   332  		dst.ReuseAsTri(n, Lower)
   333  	} else {
   334  		n2, kind := dst.Triangle()
   335  		if n != n2 {
   336  			panic(ErrShape)
   337  		}
   338  		if kind != Lower {
   339  			panic(ErrTriangle)
   340  		}
   341  	}
   342  	// Extract the lower triangular elements.
   343  	for i := 1; i < n; i++ {
   344  		copy(dst.mat.Data[i*dst.mat.Stride:i*dst.mat.Stride+i], lu.lu.mat.Data[i*lu.lu.mat.Stride:i*lu.lu.mat.Stride+i])
   345  	}
   346  	// Set ones on the diagonal.
   347  	for i := 0; i < n; i++ {
   348  		dst.mat.Data[i*dst.mat.Stride+i] = 1
   349  	}
   350  	return dst
   351  }
   352  
   353  // UTo extracts the upper triangular matrix from an LU factorization.
   354  //
   355  // If dst is empty, UTo will resize dst to be an upper-triangular n×n matrix.
   356  // When dst is non-empty, UTo will panic if dst is not n×n or not Upper.
   357  // UTo will also panic if the receiver does not contain a successful
   358  // factorization.
   359  func (lu *LU) UTo(dst *TriDense) {
   360  	if !lu.isValid() {
   361  		panic(badLU)
   362  	}
   363  
   364  	_, n := lu.lu.Dims()
   365  	if dst.IsEmpty() {
   366  		dst.ReuseAsTri(n, Upper)
   367  	} else {
   368  		n2, kind := dst.Triangle()
   369  		if n != n2 {
   370  			panic(ErrShape)
   371  		}
   372  		if kind != Upper {
   373  			panic(ErrTriangle)
   374  		}
   375  	}
   376  	// Extract the upper triangular elements.
   377  	for i := 0; i < n; i++ {
   378  		copy(dst.mat.Data[i*dst.mat.Stride+i:i*dst.mat.Stride+n], lu.lu.mat.Data[i*lu.lu.mat.Stride+i:i*lu.lu.mat.Stride+n])
   379  	}
   380  }
   381  
   382  // SolveTo solves a system of linear equations
   383  //
   384  //	A * X = B   if trans == false
   385  //	Aᵀ * X = B  if trans == true
   386  //
   387  // using the LU factorization of A stored in the receiver. The solution matrix X
   388  // is stored into dst.
   389  //
   390  // If A is singular or near-singular a Condition error is returned. See the
   391  // documentation for Condition for more information. SolveTo will panic if the
   392  // receiver does not contain a factorization.
   393  func (lu *LU) SolveTo(dst *Dense, trans bool, b Matrix) error {
   394  	if !lu.isValid() {
   395  		panic(badLU)
   396  	}
   397  
   398  	_, n := lu.lu.Dims()
   399  	br, bc := b.Dims()
   400  	if br != n {
   401  		panic(ErrShape)
   402  	}
   403  
   404  	if !lu.ok {
   405  		return Condition(math.Inf(1))
   406  	}
   407  
   408  	dst.reuseAsNonZeroed(n, bc)
   409  	bU, _ := untranspose(b)
   410  	if dst == bU {
   411  		var restore func()
   412  		dst, restore = dst.isolatedWorkspace(bU)
   413  		defer restore()
   414  	} else if rm, ok := bU.(RawMatrixer); ok {
   415  		dst.checkOverlap(rm.RawMatrix())
   416  	}
   417  
   418  	dst.Copy(b)
   419  	t := blas.NoTrans
   420  	if trans {
   421  		t = blas.Trans
   422  	}
   423  	lapack64.Getrs(t, lu.lu.mat, dst.mat, lu.swaps)
   424  	if lu.cond > ConditionTolerance {
   425  		return Condition(lu.cond)
   426  	}
   427  	return nil
   428  }
   429  
   430  // SolveVecTo solves a system of linear equations
   431  //
   432  //	A * x = b   if trans == false
   433  //	Aᵀ * x = b  if trans == true
   434  //
   435  // using the LU factorization of A stored in the receiver. The solution matrix x
   436  // is stored into dst.
   437  //
   438  // If A is singular or near-singular a Condition error is returned. See the
   439  // documentation for Condition for more information. SolveVecTo will panic if the
   440  // receiver does not contain a factorization.
   441  func (lu *LU) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
   442  	if !lu.isValid() {
   443  		panic(badLU)
   444  	}
   445  
   446  	_, n := lu.lu.Dims()
   447  	if br, bc := b.Dims(); br != n || bc != 1 {
   448  		panic(ErrShape)
   449  	}
   450  
   451  	switch rv := b.(type) {
   452  	default:
   453  		dst.reuseAsNonZeroed(n)
   454  		return lu.SolveTo(dst.asDense(), trans, b)
   455  	case RawVectorer:
   456  		if dst != b {
   457  			dst.checkOverlap(rv.RawVector())
   458  		}
   459  
   460  		if !lu.ok {
   461  			return Condition(math.Inf(1))
   462  		}
   463  
   464  		dst.reuseAsNonZeroed(n)
   465  		var restore func()
   466  		if dst == b {
   467  			dst, restore = dst.isolatedWorkspace(b)
   468  			defer restore()
   469  		}
   470  		dst.CopyVec(b)
   471  		vMat := blas64.General{
   472  			Rows:   n,
   473  			Cols:   1,
   474  			Stride: dst.mat.Inc,
   475  			Data:   dst.mat.Data,
   476  		}
   477  		t := blas.NoTrans
   478  		if trans {
   479  			t = blas.Trans
   480  		}
   481  		lapack64.Getrs(t, lu.lu.mat, vMat, lu.swaps)
   482  		if lu.cond > ConditionTolerance {
   483  			return Condition(lu.cond)
   484  		}
   485  		return nil
   486  	}
   487  }