gonum.org/v1/gonum@v0.15.1-0.20240517103525-f853624cb1bb/stat/pca_cca.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package stat 6 7 import ( 8 "errors" 9 "math" 10 11 "gonum.org/v1/gonum/floats" 12 "gonum.org/v1/gonum/mat" 13 ) 14 15 // PC is a type for computing and extracting the principal components of a 16 // matrix. The results of the principal components analysis are only valid 17 // if the call to PrincipalComponents was successful. 18 type PC struct { 19 n, d int 20 weights []float64 21 svd *mat.SVD 22 ok bool 23 } 24 25 // PrincipalComponents performs a weighted principal components analysis on the 26 // matrix of the input data which is represented as an n×d matrix a where each 27 // row is an observation and each column is a variable. 28 // 29 // PrincipalComponents centers the variables but does not scale the variance. 30 // 31 // The weights slice is used to weight the observations. If weights is nil, each 32 // weight is considered to have a value of one, otherwise the length of weights 33 // must match the number of observations or PrincipalComponents will panic. 34 // 35 // PrincipalComponents returns whether the analysis was successful. 36 func (c *PC) PrincipalComponents(a mat.Matrix, weights []float64) (ok bool) { 37 c.n, c.d = a.Dims() 38 if weights != nil && len(weights) != c.n { 39 panic("stat: len(weights) != observations") 40 } 41 42 c.svd, c.ok = svdFactorizeCentered(c.svd, a, weights) 43 if c.ok { 44 c.weights = append(c.weights[:0], weights...) 45 } 46 return c.ok 47 } 48 49 // VectorsTo returns the component direction vectors of a principal components 50 // analysis. The vectors are returned in the columns of a d×min(n, d) matrix. 51 // 52 // If dst is empty, VectorsTo will resize dst to be d×min(n, d). When dst is 53 // non-empty, VectorsTo will panic if dst is not d×min(n, d). VectorsTo will also 54 // panic if the receiver does not contain a successful PC. 55 func (c *PC) VectorsTo(dst *mat.Dense) { 56 if !c.ok { 57 panic("stat: use of unsuccessful principal components analysis") 58 } 59 60 if dst.IsEmpty() { 61 dst.ReuseAs(c.d, min(c.n, c.d)) 62 } else { 63 if d, n := dst.Dims(); d != c.d || n != min(c.n, c.d) { 64 panic(mat.ErrShape) 65 } 66 } 67 c.svd.VTo(dst) 68 } 69 70 // VarsTo returns the column variances of the principal component scores, 71 // b * vecs, where b is a matrix with centered columns. Variances are returned 72 // in descending order. 73 // If dst is not nil it is used to store the variances and returned. 74 // Vars will panic if the receiver has not successfully performed a principal 75 // components analysis or dst is not nil and the length of dst is not min(n, d). 76 func (c *PC) VarsTo(dst []float64) []float64 { 77 if !c.ok { 78 panic("stat: use of unsuccessful principal components analysis") 79 } 80 if dst != nil && len(dst) != min(c.n, c.d) { 81 panic("stat: length of slice does not match analysis") 82 } 83 84 dst = c.svd.Values(dst) 85 var f float64 86 if c.weights == nil { 87 f = 1 / float64(c.n-1) 88 } else { 89 f = 1 / (floats.Sum(c.weights) - 1) 90 } 91 for i, v := range dst { 92 dst[i] = f * v * v 93 } 94 return dst 95 } 96 97 // CC is a type for computing the canonical correlations of a pair of matrices. 98 // The results of the canonical correlation analysis are only valid 99 // if the call to CanonicalCorrelations was successful. 100 type CC struct { 101 // n is the number of observations used to 102 // construct the canonical correlations. 103 n int 104 105 // xd and yd are used for size checks. 106 xd, yd int 107 108 x, y, c *mat.SVD 109 ok bool 110 } 111 112 // CanonicalCorrelations performs a canonical correlation analysis of the 113 // input data x and y, columns of which should be interpretable as two sets 114 // of measurements on the same observations (rows). These observations are 115 // optionally weighted by weights. The result of the analysis is stored in 116 // the receiver if the analysis is successful. 117 // 118 // Canonical correlation analysis finds associations between two sets of 119 // variables on the same observations by finding linear combinations of the two 120 // sphered datasets that maximize the correlation between them. 121 // 122 // Some notation: let Xc and Yc denote the centered input data matrices x 123 // and y (column means subtracted from each column), let Sx and Sy denote the 124 // sample covariance matrices within x and y respectively, and let Sxy denote 125 // the covariance matrix between x and y. The sphered data can then be expressed 126 // as Xc * Sx^{-1/2} and Yc * Sy^{-1/2} respectively, and the correlation matrix 127 // between the sphered data is called the canonical correlation matrix, 128 // Sx^{-1/2} * Sxy * Sy^{-1/2}. In cases where S^{-1/2} is ambiguous for some 129 // covariance matrix S, S^{-1/2} is taken to be E * D^{-1/2} * Eᵀ where S can 130 // be eigendecomposed as S = E * D * Eᵀ. 131 // 132 // The canonical correlations are the correlations between the corresponding 133 // pairs of canonical variables and can be obtained with c.Corrs(). Canonical 134 // variables can be obtained by projecting the sphered data into the left and 135 // right eigenvectors of the canonical correlation matrix, and these 136 // eigenvectors can be obtained with c.Left(m, true) and c.Right(m, true) 137 // respectively. The canonical variables can also be obtained directly from the 138 // centered raw data by using the back-transformed eigenvectors which can be 139 // obtained with c.Left(m, false) and c.Right(m, false) respectively. 140 // 141 // The first pair of left and right eigenvectors of the canonical correlation 142 // matrix can be interpreted as directions into which the respective sphered 143 // data can be projected such that the correlation between the two projections 144 // is maximized. The second pair and onwards solve the same optimization but 145 // under the constraint that they are uncorrelated (orthogonal in sphered space) 146 // to previous projections. 147 // 148 // CanonicalCorrelations will panic if the inputs x and y do not have the same 149 // number of rows. 150 // 151 // The slice weights is used to weight the observations. If weights is nil, each 152 // weight is considered to have a value of one, otherwise the length of weights 153 // must match the number of observations (rows of both x and y) or 154 // CanonicalCorrelations will panic. 155 // 156 // More details can be found at 157 // https://en.wikipedia.org/wiki/Canonical_correlation 158 // or in Chapter 3 of 159 // Koch, Inge. Analysis of multivariate and high-dimensional data. 160 // Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939 161 func (c *CC) CanonicalCorrelations(x, y mat.Matrix, weights []float64) error { 162 var yn int 163 c.n, c.xd = x.Dims() 164 yn, c.yd = y.Dims() 165 if c.n != yn { 166 panic("stat: unequal number of observations") 167 } 168 if weights != nil && len(weights) != c.n { 169 panic("stat: len(weights) != observations") 170 } 171 172 // Center and factorize x and y. 173 c.x, c.ok = svdFactorizeCentered(c.x, x, weights) 174 if !c.ok { 175 return errors.New("stat: failed to factorize x") 176 } 177 c.y, c.ok = svdFactorizeCentered(c.y, y, weights) 178 if !c.ok { 179 return errors.New("stat: failed to factorize y") 180 } 181 var xu, xv, yu, yv mat.Dense 182 c.x.UTo(&xu) 183 c.x.VTo(&xv) 184 c.y.UTo(&yu) 185 c.y.VTo(&yv) 186 187 // Calculate and factorise the canonical correlation matrix. 188 var ccor mat.Dense 189 ccor.Product(&xv, xu.T(), &yu, yv.T()) 190 if c.c == nil { 191 c.c = &mat.SVD{} 192 } 193 c.ok = c.c.Factorize(&ccor, mat.SVDThin) 194 if !c.ok { 195 return errors.New("stat: failed to factorize ccor") 196 } 197 return nil 198 } 199 200 // CorrsTo returns the canonical correlations, using dst if it is not nil. 201 // If dst is not nil and len(dst) does not match the number of columns in 202 // the y input matrix, Corrs will panic. 203 func (c *CC) CorrsTo(dst []float64) []float64 { 204 if !c.ok { 205 panic("stat: canonical correlations missing or invalid") 206 } 207 208 if dst != nil && len(dst) != c.yd { 209 panic("stat: length of destination does not match input dimension") 210 } 211 return c.c.Values(dst) 212 } 213 214 // LeftTo returns the left eigenvectors of the canonical correlation matrix if 215 // spheredSpace is true. If spheredSpace is false it returns these eigenvectors 216 // back-transformed to the original data space. 217 // 218 // If dst is empty, LeftTo will resize dst to be xd×yd. When dst is 219 // non-empty, LeftTo will panic if dst is not xd×yd. LeftTo will also 220 // panic if the receiver does not contain a successful CC. 221 func (c *CC) LeftTo(dst *mat.Dense, spheredSpace bool) { 222 if !c.ok || c.n < 2 { 223 panic("stat: canonical correlations missing or invalid") 224 } 225 226 if dst.IsEmpty() { 227 dst.ReuseAs(c.xd, c.yd) 228 } else { 229 if d, n := dst.Dims(); d != c.xd || n != c.yd { 230 panic(mat.ErrShape) 231 } 232 } 233 c.c.UTo(dst) 234 if spheredSpace { 235 return 236 } 237 238 xs := c.x.Values(nil) 239 xv := &mat.Dense{} 240 c.x.VTo(xv) 241 242 scaleColsReciSqrt(xv, xs) 243 244 dst.Product(xv, xv.T(), dst) 245 dst.Scale(math.Sqrt(float64(c.n-1)), dst) 246 } 247 248 // RightTo returns the right eigenvectors of the canonical correlation matrix if 249 // spheredSpace is true. If spheredSpace is false it returns these eigenvectors 250 // back-transformed to the original data space. 251 // 252 // If dst is empty, RightTo will resize dst to be yd×yd. When dst is 253 // non-empty, RightTo will panic if dst is not yd×yd. RightTo will also 254 // panic if the receiver does not contain a successful CC. 255 func (c *CC) RightTo(dst *mat.Dense, spheredSpace bool) { 256 if !c.ok || c.n < 2 { 257 panic("stat: canonical correlations missing or invalid") 258 } 259 260 if dst.IsEmpty() { 261 dst.ReuseAs(c.yd, c.yd) 262 } else { 263 if d, n := dst.Dims(); d != c.yd || n != c.yd { 264 panic(mat.ErrShape) 265 } 266 } 267 c.c.VTo(dst) 268 if spheredSpace { 269 return 270 } 271 272 ys := c.y.Values(nil) 273 yv := &mat.Dense{} 274 c.y.VTo(yv) 275 276 scaleColsReciSqrt(yv, ys) 277 278 dst.Product(yv, yv.T(), dst) 279 dst.Scale(math.Sqrt(float64(c.n-1)), dst) 280 } 281 282 func svdFactorizeCentered(work *mat.SVD, m mat.Matrix, weights []float64) (svd *mat.SVD, ok bool) { 283 n, d := m.Dims() 284 centered := mat.NewDense(n, d, nil) 285 col := make([]float64, n) 286 for j := 0; j < d; j++ { 287 mat.Col(col, j, m) 288 floats.AddConst(-Mean(col, weights), col) 289 centered.SetCol(j, col) 290 } 291 for i, w := range weights { 292 floats.Scale(math.Sqrt(w), centered.RawRowView(i)) 293 } 294 if work == nil { 295 work = &mat.SVD{} 296 } 297 ok = work.Factorize(centered, mat.SVDThin) 298 return work, ok 299 } 300 301 // scaleColsReciSqrt scales the columns of cols 302 // by the reciprocal square-root of vals. 303 func scaleColsReciSqrt(cols *mat.Dense, vals []float64) { 304 if cols == nil { 305 panic("stat: input nil") 306 } 307 n, d := cols.Dims() 308 if len(vals) != d { 309 panic("stat: input length mismatch") 310 } 311 col := make([]float64, n) 312 for j := 0; j < d; j++ { 313 mat.Col(col, j, cols) 314 floats.Scale(math.Sqrt(1/vals[j]), col) 315 cols.SetCol(j, col) 316 } 317 }