gopkg.in/alecthomas/gometalinter.v3@v3.0.0/_linters/src/golang.org/x/tools/go/pointer/gen.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package pointer
     6  
     7  // This file defines the constraint generation phase.
     8  
     9  // TODO(adonovan): move the constraint definitions and the store() etc
    10  // functions which add them (and are also used by the solver) into a
    11  // new file, constraints.go.
    12  
    13  import (
    14  	"fmt"
    15  	"go/token"
    16  	"go/types"
    17  
    18  	"golang.org/x/tools/go/callgraph"
    19  	"golang.org/x/tools/go/ssa"
    20  )
    21  
    22  var (
    23  	tEface     = types.NewInterface(nil, nil).Complete()
    24  	tInvalid   = types.Typ[types.Invalid]
    25  	tUnsafePtr = types.Typ[types.UnsafePointer]
    26  )
    27  
    28  // ---------- Node creation ----------
    29  
    30  // nextNode returns the index of the next unused node.
    31  func (a *analysis) nextNode() nodeid {
    32  	return nodeid(len(a.nodes))
    33  }
    34  
    35  // addNodes creates nodes for all scalar elements in type typ, and
    36  // returns the id of the first one, or zero if the type was
    37  // analytically uninteresting.
    38  //
    39  // comment explains the origin of the nodes, as a debugging aid.
    40  //
    41  func (a *analysis) addNodes(typ types.Type, comment string) nodeid {
    42  	id := a.nextNode()
    43  	for _, fi := range a.flatten(typ) {
    44  		a.addOneNode(fi.typ, comment, fi)
    45  	}
    46  	if id == a.nextNode() {
    47  		return 0 // type contained no pointers
    48  	}
    49  	return id
    50  }
    51  
    52  // addOneNode creates a single node with type typ, and returns its id.
    53  //
    54  // typ should generally be scalar (except for tagged.T nodes
    55  // and struct/array identity nodes).  Use addNodes for non-scalar types.
    56  //
    57  // comment explains the origin of the nodes, as a debugging aid.
    58  // subelement indicates the subelement, e.g. ".a.b[*].c".
    59  //
    60  func (a *analysis) addOneNode(typ types.Type, comment string, subelement *fieldInfo) nodeid {
    61  	id := a.nextNode()
    62  	a.nodes = append(a.nodes, &node{typ: typ, subelement: subelement, solve: new(solverState)})
    63  	if a.log != nil {
    64  		fmt.Fprintf(a.log, "\tcreate n%d %s for %s%s\n",
    65  			id, typ, comment, subelement.path())
    66  	}
    67  	return id
    68  }
    69  
    70  // setValueNode associates node id with the value v.
    71  // cgn identifies the context iff v is a local variable.
    72  //
    73  func (a *analysis) setValueNode(v ssa.Value, id nodeid, cgn *cgnode) {
    74  	if cgn != nil {
    75  		a.localval[v] = id
    76  	} else {
    77  		a.globalval[v] = id
    78  	}
    79  	if a.log != nil {
    80  		fmt.Fprintf(a.log, "\tval[%s] = n%d  (%T)\n", v.Name(), id, v)
    81  	}
    82  
    83  	// Due to context-sensitivity, we may encounter the same Value
    84  	// in many contexts. We merge them to a canonical node, since
    85  	// that's what all clients want.
    86  
    87  	// Record the (v, id) relation if the client has queried pts(v).
    88  	if _, ok := a.config.Queries[v]; ok {
    89  		t := v.Type()
    90  		ptr, ok := a.result.Queries[v]
    91  		if !ok {
    92  			// First time?  Create the canonical query node.
    93  			ptr = Pointer{a, a.addNodes(t, "query")}
    94  			a.result.Queries[v] = ptr
    95  		}
    96  		a.result.Queries[v] = ptr
    97  		a.copy(ptr.n, id, a.sizeof(t))
    98  	}
    99  
   100  	// Record the (*v, id) relation if the client has queried pts(*v).
   101  	if _, ok := a.config.IndirectQueries[v]; ok {
   102  		t := v.Type()
   103  		ptr, ok := a.result.IndirectQueries[v]
   104  		if !ok {
   105  			// First time? Create the canonical indirect query node.
   106  			ptr = Pointer{a, a.addNodes(v.Type(), "query.indirect")}
   107  			a.result.IndirectQueries[v] = ptr
   108  		}
   109  		a.genLoad(cgn, ptr.n, v, 0, a.sizeof(t))
   110  	}
   111  
   112  	for _, query := range a.config.extendedQueries[v] {
   113  		t, nid := a.evalExtendedQuery(v.Type().Underlying(), id, query.ops)
   114  
   115  		if query.ptr.a == nil {
   116  			query.ptr.a = a
   117  			query.ptr.n = a.addNodes(t, "query.extended")
   118  		}
   119  		a.copy(query.ptr.n, nid, a.sizeof(t))
   120  	}
   121  }
   122  
   123  // endObject marks the end of a sequence of calls to addNodes denoting
   124  // a single object allocation.
   125  //
   126  // obj is the start node of the object, from a prior call to nextNode.
   127  // Its size, flags and optional data will be updated.
   128  //
   129  func (a *analysis) endObject(obj nodeid, cgn *cgnode, data interface{}) *object {
   130  	// Ensure object is non-empty by padding;
   131  	// the pad will be the object node.
   132  	size := uint32(a.nextNode() - obj)
   133  	if size == 0 {
   134  		a.addOneNode(tInvalid, "padding", nil)
   135  	}
   136  	objNode := a.nodes[obj]
   137  	o := &object{
   138  		size: size, // excludes padding
   139  		cgn:  cgn,
   140  		data: data,
   141  	}
   142  	objNode.obj = o
   143  
   144  	return o
   145  }
   146  
   147  // makeFunctionObject creates and returns a new function object
   148  // (contour) for fn, and returns the id of its first node.  It also
   149  // enqueues fn for subsequent constraint generation.
   150  //
   151  // For a context-sensitive contour, callersite identifies the sole
   152  // callsite; for shared contours, caller is nil.
   153  //
   154  func (a *analysis) makeFunctionObject(fn *ssa.Function, callersite *callsite) nodeid {
   155  	if a.log != nil {
   156  		fmt.Fprintf(a.log, "\t---- makeFunctionObject %s\n", fn)
   157  	}
   158  
   159  	// obj is the function object (identity, params, results).
   160  	obj := a.nextNode()
   161  	cgn := a.makeCGNode(fn, obj, callersite)
   162  	sig := fn.Signature
   163  	a.addOneNode(sig, "func.cgnode", nil) // (scalar with Signature type)
   164  	if recv := sig.Recv(); recv != nil {
   165  		a.addNodes(recv.Type(), "func.recv")
   166  	}
   167  	a.addNodes(sig.Params(), "func.params")
   168  	a.addNodes(sig.Results(), "func.results")
   169  	a.endObject(obj, cgn, fn).flags |= otFunction
   170  
   171  	if a.log != nil {
   172  		fmt.Fprintf(a.log, "\t----\n")
   173  	}
   174  
   175  	// Queue it up for constraint processing.
   176  	a.genq = append(a.genq, cgn)
   177  
   178  	return obj
   179  }
   180  
   181  // makeTagged creates a tagged object of type typ.
   182  func (a *analysis) makeTagged(typ types.Type, cgn *cgnode, data interface{}) nodeid {
   183  	obj := a.addOneNode(typ, "tagged.T", nil) // NB: type may be non-scalar!
   184  	a.addNodes(typ, "tagged.v")
   185  	a.endObject(obj, cgn, data).flags |= otTagged
   186  	return obj
   187  }
   188  
   189  // makeRtype returns the canonical tagged object of type *rtype whose
   190  // payload points to the sole rtype object for T.
   191  //
   192  // TODO(adonovan): move to reflect.go; it's part of the solver really.
   193  //
   194  func (a *analysis) makeRtype(T types.Type) nodeid {
   195  	if v := a.rtypes.At(T); v != nil {
   196  		return v.(nodeid)
   197  	}
   198  
   199  	// Create the object for the reflect.rtype itself, which is
   200  	// ordinarily a large struct but here a single node will do.
   201  	obj := a.nextNode()
   202  	a.addOneNode(T, "reflect.rtype", nil)
   203  	a.endObject(obj, nil, T)
   204  
   205  	id := a.makeTagged(a.reflectRtypePtr, nil, T)
   206  	a.nodes[id+1].typ = T // trick (each *rtype tagged object is a singleton)
   207  	a.addressOf(a.reflectRtypePtr, id+1, obj)
   208  
   209  	a.rtypes.Set(T, id)
   210  	return id
   211  }
   212  
   213  // rtypeValue returns the type of the *reflect.rtype-tagged object obj.
   214  func (a *analysis) rtypeTaggedValue(obj nodeid) types.Type {
   215  	tDyn, t, _ := a.taggedValue(obj)
   216  	if tDyn != a.reflectRtypePtr {
   217  		panic(fmt.Sprintf("not a *reflect.rtype-tagged object: obj=n%d tag=%v payload=n%d", obj, tDyn, t))
   218  	}
   219  	return a.nodes[t].typ
   220  }
   221  
   222  // valueNode returns the id of the value node for v, creating it (and
   223  // the association) as needed.  It may return zero for uninteresting
   224  // values containing no pointers.
   225  //
   226  func (a *analysis) valueNode(v ssa.Value) nodeid {
   227  	// Value nodes for locals are created en masse by genFunc.
   228  	if id, ok := a.localval[v]; ok {
   229  		return id
   230  	}
   231  
   232  	// Value nodes for globals are created on demand.
   233  	id, ok := a.globalval[v]
   234  	if !ok {
   235  		var comment string
   236  		if a.log != nil {
   237  			comment = v.String()
   238  		}
   239  		id = a.addNodes(v.Type(), comment)
   240  		if obj := a.objectNode(nil, v); obj != 0 {
   241  			a.addressOf(v.Type(), id, obj)
   242  		}
   243  		a.setValueNode(v, id, nil)
   244  	}
   245  	return id
   246  }
   247  
   248  // valueOffsetNode ascertains the node for tuple/struct value v,
   249  // then returns the node for its subfield #index.
   250  //
   251  func (a *analysis) valueOffsetNode(v ssa.Value, index int) nodeid {
   252  	id := a.valueNode(v)
   253  	if id == 0 {
   254  		panic(fmt.Sprintf("cannot offset within n0: %s = %s", v.Name(), v))
   255  	}
   256  	return id + nodeid(a.offsetOf(v.Type(), index))
   257  }
   258  
   259  // isTaggedObject reports whether object obj is a tagged object.
   260  func (a *analysis) isTaggedObject(obj nodeid) bool {
   261  	return a.nodes[obj].obj.flags&otTagged != 0
   262  }
   263  
   264  // taggedValue returns the dynamic type tag, the (first node of the)
   265  // payload, and the indirect flag of the tagged object starting at id.
   266  // Panic ensues if !isTaggedObject(id).
   267  //
   268  func (a *analysis) taggedValue(obj nodeid) (tDyn types.Type, v nodeid, indirect bool) {
   269  	n := a.nodes[obj]
   270  	flags := n.obj.flags
   271  	if flags&otTagged == 0 {
   272  		panic(fmt.Sprintf("not a tagged object: n%d", obj))
   273  	}
   274  	return n.typ, obj + 1, flags&otIndirect != 0
   275  }
   276  
   277  // funcParams returns the first node of the params (P) block of the
   278  // function whose object node (obj.flags&otFunction) is id.
   279  //
   280  func (a *analysis) funcParams(id nodeid) nodeid {
   281  	n := a.nodes[id]
   282  	if n.obj == nil || n.obj.flags&otFunction == 0 {
   283  		panic(fmt.Sprintf("funcParams(n%d): not a function object block", id))
   284  	}
   285  	return id + 1
   286  }
   287  
   288  // funcResults returns the first node of the results (R) block of the
   289  // function whose object node (obj.flags&otFunction) is id.
   290  //
   291  func (a *analysis) funcResults(id nodeid) nodeid {
   292  	n := a.nodes[id]
   293  	if n.obj == nil || n.obj.flags&otFunction == 0 {
   294  		panic(fmt.Sprintf("funcResults(n%d): not a function object block", id))
   295  	}
   296  	sig := n.typ.(*types.Signature)
   297  	id += 1 + nodeid(a.sizeof(sig.Params()))
   298  	if sig.Recv() != nil {
   299  		id += nodeid(a.sizeof(sig.Recv().Type()))
   300  	}
   301  	return id
   302  }
   303  
   304  // ---------- Constraint creation ----------
   305  
   306  // copy creates a constraint of the form dst = src.
   307  // sizeof is the width (in logical fields) of the copied type.
   308  //
   309  func (a *analysis) copy(dst, src nodeid, sizeof uint32) {
   310  	if src == dst || sizeof == 0 {
   311  		return // trivial
   312  	}
   313  	if src == 0 || dst == 0 {
   314  		panic(fmt.Sprintf("ill-typed copy dst=n%d src=n%d", dst, src))
   315  	}
   316  	for i := uint32(0); i < sizeof; i++ {
   317  		a.addConstraint(&copyConstraint{dst, src})
   318  		src++
   319  		dst++
   320  	}
   321  }
   322  
   323  // addressOf creates a constraint of the form id = &obj.
   324  // T is the type of the address.
   325  func (a *analysis) addressOf(T types.Type, id, obj nodeid) {
   326  	if id == 0 {
   327  		panic("addressOf: zero id")
   328  	}
   329  	if obj == 0 {
   330  		panic("addressOf: zero obj")
   331  	}
   332  	if a.shouldTrack(T) {
   333  		a.addConstraint(&addrConstraint{id, obj})
   334  	}
   335  }
   336  
   337  // load creates a load constraint of the form dst = src[offset].
   338  // offset is the pointer offset in logical fields.
   339  // sizeof is the width (in logical fields) of the loaded type.
   340  //
   341  func (a *analysis) load(dst, src nodeid, offset, sizeof uint32) {
   342  	if dst == 0 {
   343  		return // load of non-pointerlike value
   344  	}
   345  	if src == 0 && dst == 0 {
   346  		return // non-pointerlike operation
   347  	}
   348  	if src == 0 || dst == 0 {
   349  		panic(fmt.Sprintf("ill-typed load dst=n%d src=n%d", dst, src))
   350  	}
   351  	for i := uint32(0); i < sizeof; i++ {
   352  		a.addConstraint(&loadConstraint{offset, dst, src})
   353  		offset++
   354  		dst++
   355  	}
   356  }
   357  
   358  // store creates a store constraint of the form dst[offset] = src.
   359  // offset is the pointer offset in logical fields.
   360  // sizeof is the width (in logical fields) of the stored type.
   361  //
   362  func (a *analysis) store(dst, src nodeid, offset uint32, sizeof uint32) {
   363  	if src == 0 {
   364  		return // store of non-pointerlike value
   365  	}
   366  	if src == 0 && dst == 0 {
   367  		return // non-pointerlike operation
   368  	}
   369  	if src == 0 || dst == 0 {
   370  		panic(fmt.Sprintf("ill-typed store dst=n%d src=n%d", dst, src))
   371  	}
   372  	for i := uint32(0); i < sizeof; i++ {
   373  		a.addConstraint(&storeConstraint{offset, dst, src})
   374  		offset++
   375  		src++
   376  	}
   377  }
   378  
   379  // offsetAddr creates an offsetAddr constraint of the form dst = &src.#offset.
   380  // offset is the field offset in logical fields.
   381  // T is the type of the address.
   382  //
   383  func (a *analysis) offsetAddr(T types.Type, dst, src nodeid, offset uint32) {
   384  	if !a.shouldTrack(T) {
   385  		return
   386  	}
   387  	if offset == 0 {
   388  		// Simplify  dst = &src->f0
   389  		//       to  dst = src
   390  		// (NB: this optimisation is defeated by the identity
   391  		// field prepended to struct and array objects.)
   392  		a.copy(dst, src, 1)
   393  	} else {
   394  		a.addConstraint(&offsetAddrConstraint{offset, dst, src})
   395  	}
   396  }
   397  
   398  // typeAssert creates a typeFilter or untag constraint of the form dst = src.(T):
   399  // typeFilter for an interface, untag for a concrete type.
   400  // The exact flag is specified as for untagConstraint.
   401  //
   402  func (a *analysis) typeAssert(T types.Type, dst, src nodeid, exact bool) {
   403  	if isInterface(T) {
   404  		a.addConstraint(&typeFilterConstraint{T, dst, src})
   405  	} else {
   406  		a.addConstraint(&untagConstraint{T, dst, src, exact})
   407  	}
   408  }
   409  
   410  // addConstraint adds c to the constraint set.
   411  func (a *analysis) addConstraint(c constraint) {
   412  	a.constraints = append(a.constraints, c)
   413  	if a.log != nil {
   414  		fmt.Fprintf(a.log, "\t%s\n", c)
   415  	}
   416  }
   417  
   418  // copyElems generates load/store constraints for *dst = *src,
   419  // where src and dst are slices or *arrays.
   420  //
   421  func (a *analysis) copyElems(cgn *cgnode, typ types.Type, dst, src ssa.Value) {
   422  	tmp := a.addNodes(typ, "copy")
   423  	sz := a.sizeof(typ)
   424  	a.genLoad(cgn, tmp, src, 1, sz)
   425  	a.genStore(cgn, dst, tmp, 1, sz)
   426  }
   427  
   428  // ---------- Constraint generation ----------
   429  
   430  // genConv generates constraints for the conversion operation conv.
   431  func (a *analysis) genConv(conv *ssa.Convert, cgn *cgnode) {
   432  	res := a.valueNode(conv)
   433  	if res == 0 {
   434  		return // result is non-pointerlike
   435  	}
   436  
   437  	tSrc := conv.X.Type()
   438  	tDst := conv.Type()
   439  
   440  	switch utSrc := tSrc.Underlying().(type) {
   441  	case *types.Slice:
   442  		// []byte/[]rune -> string?
   443  		return
   444  
   445  	case *types.Pointer:
   446  		// *T -> unsafe.Pointer?
   447  		if tDst.Underlying() == tUnsafePtr {
   448  			return // we don't model unsafe aliasing (unsound)
   449  		}
   450  
   451  	case *types.Basic:
   452  		switch tDst.Underlying().(type) {
   453  		case *types.Pointer:
   454  			// Treat unsafe.Pointer->*T conversions like
   455  			// new(T) and create an unaliased object.
   456  			if utSrc == tUnsafePtr {
   457  				obj := a.addNodes(mustDeref(tDst), "unsafe.Pointer conversion")
   458  				a.endObject(obj, cgn, conv)
   459  				a.addressOf(tDst, res, obj)
   460  				return
   461  			}
   462  
   463  		case *types.Slice:
   464  			// string -> []byte/[]rune (or named aliases)?
   465  			if utSrc.Info()&types.IsString != 0 {
   466  				obj := a.addNodes(sliceToArray(tDst), "convert")
   467  				a.endObject(obj, cgn, conv)
   468  				a.addressOf(tDst, res, obj)
   469  				return
   470  			}
   471  
   472  		case *types.Basic:
   473  			// All basic-to-basic type conversions are no-ops.
   474  			// This includes uintptr<->unsafe.Pointer conversions,
   475  			// which we (unsoundly) ignore.
   476  			return
   477  		}
   478  	}
   479  
   480  	panic(fmt.Sprintf("illegal *ssa.Convert %s -> %s: %s", tSrc, tDst, conv.Parent()))
   481  }
   482  
   483  // genAppend generates constraints for a call to append.
   484  func (a *analysis) genAppend(instr *ssa.Call, cgn *cgnode) {
   485  	// Consider z = append(x, y).   y is optional.
   486  	// This may allocate a new [1]T array; call its object w.
   487  	// We get the following constraints:
   488  	// 	z = x
   489  	// 	z = &w
   490  	//     *z = *y
   491  
   492  	x := instr.Call.Args[0]
   493  
   494  	z := instr
   495  	a.copy(a.valueNode(z), a.valueNode(x), 1) // z = x
   496  
   497  	if len(instr.Call.Args) == 1 {
   498  		return // no allocation for z = append(x) or _ = append(x).
   499  	}
   500  
   501  	// TODO(adonovan): test append([]byte, ...string) []byte.
   502  
   503  	y := instr.Call.Args[1]
   504  	tArray := sliceToArray(instr.Call.Args[0].Type())
   505  
   506  	var w nodeid
   507  	w = a.nextNode()
   508  	a.addNodes(tArray, "append")
   509  	a.endObject(w, cgn, instr)
   510  
   511  	a.copyElems(cgn, tArray.Elem(), z, y)        // *z = *y
   512  	a.addressOf(instr.Type(), a.valueNode(z), w) //  z = &w
   513  }
   514  
   515  // genBuiltinCall generates contraints for a call to a built-in.
   516  func (a *analysis) genBuiltinCall(instr ssa.CallInstruction, cgn *cgnode) {
   517  	call := instr.Common()
   518  	switch call.Value.(*ssa.Builtin).Name() {
   519  	case "append":
   520  		// Safe cast: append cannot appear in a go or defer statement.
   521  		a.genAppend(instr.(*ssa.Call), cgn)
   522  
   523  	case "copy":
   524  		tElem := call.Args[0].Type().Underlying().(*types.Slice).Elem()
   525  		a.copyElems(cgn, tElem, call.Args[0], call.Args[1])
   526  
   527  	case "panic":
   528  		a.copy(a.panicNode, a.valueNode(call.Args[0]), 1)
   529  
   530  	case "recover":
   531  		if v := instr.Value(); v != nil {
   532  			a.copy(a.valueNode(v), a.panicNode, 1)
   533  		}
   534  
   535  	case "print":
   536  		// In the tests, the probe might be the sole reference
   537  		// to its arg, so make sure we create nodes for it.
   538  		if len(call.Args) > 0 {
   539  			a.valueNode(call.Args[0])
   540  		}
   541  
   542  	case "ssa:wrapnilchk":
   543  		a.copy(a.valueNode(instr.Value()), a.valueNode(call.Args[0]), 1)
   544  
   545  	default:
   546  		// No-ops: close len cap real imag complex print println delete.
   547  	}
   548  }
   549  
   550  // shouldUseContext defines the context-sensitivity policy.  It
   551  // returns true if we should analyse all static calls to fn anew.
   552  //
   553  // Obviously this interface rather limits how much freedom we have to
   554  // choose a policy.  The current policy, rather arbitrarily, is true
   555  // for intrinsics and accessor methods (actually: short, single-block,
   556  // call-free functions).  This is just a starting point.
   557  //
   558  func (a *analysis) shouldUseContext(fn *ssa.Function) bool {
   559  	if a.findIntrinsic(fn) != nil {
   560  		return true // treat intrinsics context-sensitively
   561  	}
   562  	if len(fn.Blocks) != 1 {
   563  		return false // too expensive
   564  	}
   565  	blk := fn.Blocks[0]
   566  	if len(blk.Instrs) > 10 {
   567  		return false // too expensive
   568  	}
   569  	if fn.Synthetic != "" && (fn.Pkg == nil || fn != fn.Pkg.Func("init")) {
   570  		return true // treat synthetic wrappers context-sensitively
   571  	}
   572  	for _, instr := range blk.Instrs {
   573  		switch instr := instr.(type) {
   574  		case ssa.CallInstruction:
   575  			// Disallow function calls (except to built-ins)
   576  			// because of the danger of unbounded recursion.
   577  			if _, ok := instr.Common().Value.(*ssa.Builtin); !ok {
   578  				return false
   579  			}
   580  		}
   581  	}
   582  	return true
   583  }
   584  
   585  // genStaticCall generates constraints for a statically dispatched function call.
   586  func (a *analysis) genStaticCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   587  	fn := call.StaticCallee()
   588  
   589  	// Special cases for inlined intrinsics.
   590  	switch fn {
   591  	case a.runtimeSetFinalizer:
   592  		// Inline SetFinalizer so the call appears direct.
   593  		site.targets = a.addOneNode(tInvalid, "SetFinalizer.targets", nil)
   594  		a.addConstraint(&runtimeSetFinalizerConstraint{
   595  			targets: site.targets,
   596  			x:       a.valueNode(call.Args[0]),
   597  			f:       a.valueNode(call.Args[1]),
   598  		})
   599  		return
   600  
   601  	case a.reflectValueCall:
   602  		// Inline (reflect.Value).Call so the call appears direct.
   603  		dotdotdot := false
   604  		ret := reflectCallImpl(a, caller, site, a.valueNode(call.Args[0]), a.valueNode(call.Args[1]), dotdotdot)
   605  		if result != 0 {
   606  			a.addressOf(fn.Signature.Results().At(0).Type(), result, ret)
   607  		}
   608  		return
   609  	}
   610  
   611  	// Ascertain the context (contour/cgnode) for a particular call.
   612  	var obj nodeid
   613  	if a.shouldUseContext(fn) {
   614  		obj = a.makeFunctionObject(fn, site) // new contour
   615  	} else {
   616  		obj = a.objectNode(nil, fn) // shared contour
   617  	}
   618  	a.callEdge(caller, site, obj)
   619  
   620  	sig := call.Signature()
   621  
   622  	// Copy receiver, if any.
   623  	params := a.funcParams(obj)
   624  	args := call.Args
   625  	if sig.Recv() != nil {
   626  		sz := a.sizeof(sig.Recv().Type())
   627  		a.copy(params, a.valueNode(args[0]), sz)
   628  		params += nodeid(sz)
   629  		args = args[1:]
   630  	}
   631  
   632  	// Copy actual parameters into formal params block.
   633  	// Must loop, since the actuals aren't contiguous.
   634  	for i, arg := range args {
   635  		sz := a.sizeof(sig.Params().At(i).Type())
   636  		a.copy(params, a.valueNode(arg), sz)
   637  		params += nodeid(sz)
   638  	}
   639  
   640  	// Copy formal results block to actual result.
   641  	if result != 0 {
   642  		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
   643  	}
   644  }
   645  
   646  // genDynamicCall generates constraints for a dynamic function call.
   647  func (a *analysis) genDynamicCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   648  	// pts(targets) will be the set of possible call targets.
   649  	site.targets = a.valueNode(call.Value)
   650  
   651  	// We add dynamic closure rules that store the arguments into
   652  	// the P-block and load the results from the R-block of each
   653  	// function discovered in pts(targets).
   654  
   655  	sig := call.Signature()
   656  	var offset uint32 = 1 // P/R block starts at offset 1
   657  	for i, arg := range call.Args {
   658  		sz := a.sizeof(sig.Params().At(i).Type())
   659  		a.genStore(caller, call.Value, a.valueNode(arg), offset, sz)
   660  		offset += sz
   661  	}
   662  	if result != 0 {
   663  		a.genLoad(caller, result, call.Value, offset, a.sizeof(sig.Results()))
   664  	}
   665  }
   666  
   667  // genInvoke generates constraints for a dynamic method invocation.
   668  func (a *analysis) genInvoke(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   669  	if call.Value.Type() == a.reflectType {
   670  		a.genInvokeReflectType(caller, site, call, result)
   671  		return
   672  	}
   673  
   674  	sig := call.Signature()
   675  
   676  	// Allocate a contiguous targets/params/results block for this call.
   677  	block := a.nextNode()
   678  	// pts(targets) will be the set of possible call targets
   679  	site.targets = a.addOneNode(sig, "invoke.targets", nil)
   680  	p := a.addNodes(sig.Params(), "invoke.params")
   681  	r := a.addNodes(sig.Results(), "invoke.results")
   682  
   683  	// Copy the actual parameters into the call's params block.
   684  	for i, n := 0, sig.Params().Len(); i < n; i++ {
   685  		sz := a.sizeof(sig.Params().At(i).Type())
   686  		a.copy(p, a.valueNode(call.Args[i]), sz)
   687  		p += nodeid(sz)
   688  	}
   689  	// Copy the call's results block to the actual results.
   690  	if result != 0 {
   691  		a.copy(result, r, a.sizeof(sig.Results()))
   692  	}
   693  
   694  	// We add a dynamic invoke constraint that will connect the
   695  	// caller's and the callee's P/R blocks for each discovered
   696  	// call target.
   697  	a.addConstraint(&invokeConstraint{call.Method, a.valueNode(call.Value), block})
   698  }
   699  
   700  // genInvokeReflectType is a specialization of genInvoke where the
   701  // receiver type is a reflect.Type, under the assumption that there
   702  // can be at most one implementation of this interface, *reflect.rtype.
   703  //
   704  // (Though this may appear to be an instance of a pattern---method
   705  // calls on interfaces known to have exactly one implementation---in
   706  // practice it occurs rarely, so we special case for reflect.Type.)
   707  //
   708  // In effect we treat this:
   709  //    var rt reflect.Type = ...
   710  //    rt.F()
   711  // as this:
   712  //    rt.(*reflect.rtype).F()
   713  //
   714  func (a *analysis) genInvokeReflectType(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   715  	// Unpack receiver into rtype
   716  	rtype := a.addOneNode(a.reflectRtypePtr, "rtype.recv", nil)
   717  	recv := a.valueNode(call.Value)
   718  	a.typeAssert(a.reflectRtypePtr, rtype, recv, true)
   719  
   720  	// Look up the concrete method.
   721  	fn := a.prog.LookupMethod(a.reflectRtypePtr, call.Method.Pkg(), call.Method.Name())
   722  
   723  	obj := a.makeFunctionObject(fn, site) // new contour for this call
   724  	a.callEdge(caller, site, obj)
   725  
   726  	// From now on, it's essentially a static call, but little is
   727  	// gained by factoring together the code for both cases.
   728  
   729  	sig := fn.Signature // concrete method
   730  	targets := a.addOneNode(sig, "call.targets", nil)
   731  	a.addressOf(sig, targets, obj) // (a singleton)
   732  
   733  	// Copy receiver.
   734  	params := a.funcParams(obj)
   735  	a.copy(params, rtype, 1)
   736  	params++
   737  
   738  	// Copy actual parameters into formal P-block.
   739  	// Must loop, since the actuals aren't contiguous.
   740  	for i, arg := range call.Args {
   741  		sz := a.sizeof(sig.Params().At(i).Type())
   742  		a.copy(params, a.valueNode(arg), sz)
   743  		params += nodeid(sz)
   744  	}
   745  
   746  	// Copy formal R-block to actual R-block.
   747  	if result != 0 {
   748  		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
   749  	}
   750  }
   751  
   752  // genCall generates constraints for call instruction instr.
   753  func (a *analysis) genCall(caller *cgnode, instr ssa.CallInstruction) {
   754  	call := instr.Common()
   755  
   756  	// Intrinsic implementations of built-in functions.
   757  	if _, ok := call.Value.(*ssa.Builtin); ok {
   758  		a.genBuiltinCall(instr, caller)
   759  		return
   760  	}
   761  
   762  	var result nodeid
   763  	if v := instr.Value(); v != nil {
   764  		result = a.valueNode(v)
   765  	}
   766  
   767  	site := &callsite{instr: instr}
   768  	if call.StaticCallee() != nil {
   769  		a.genStaticCall(caller, site, call, result)
   770  	} else if call.IsInvoke() {
   771  		a.genInvoke(caller, site, call, result)
   772  	} else {
   773  		a.genDynamicCall(caller, site, call, result)
   774  	}
   775  
   776  	caller.sites = append(caller.sites, site)
   777  
   778  	if a.log != nil {
   779  		// TODO(adonovan): debug: improve log message.
   780  		fmt.Fprintf(a.log, "\t%s to targets %s from %s\n", site, site.targets, caller)
   781  	}
   782  }
   783  
   784  // objectNode returns the object to which v points, if known.
   785  // In other words, if the points-to set of v is a singleton, it
   786  // returns the sole label, zero otherwise.
   787  //
   788  // We exploit this information to make the generated constraints less
   789  // dynamic.  For example, a complex load constraint can be replaced by
   790  // a simple copy constraint when the sole destination is known a priori.
   791  //
   792  // Some SSA instructions always have singletons points-to sets:
   793  // 	Alloc, Function, Global, MakeChan, MakeClosure,  MakeInterface,  MakeMap,  MakeSlice.
   794  // Others may be singletons depending on their operands:
   795  // 	FreeVar, Const, Convert, FieldAddr, IndexAddr, Slice.
   796  //
   797  // Idempotent.  Objects are created as needed, possibly via recursion
   798  // down the SSA value graph, e.g IndexAddr(FieldAddr(Alloc))).
   799  //
   800  func (a *analysis) objectNode(cgn *cgnode, v ssa.Value) nodeid {
   801  	switch v.(type) {
   802  	case *ssa.Global, *ssa.Function, *ssa.Const, *ssa.FreeVar:
   803  		// Global object.
   804  		obj, ok := a.globalobj[v]
   805  		if !ok {
   806  			switch v := v.(type) {
   807  			case *ssa.Global:
   808  				obj = a.nextNode()
   809  				a.addNodes(mustDeref(v.Type()), "global")
   810  				a.endObject(obj, nil, v)
   811  
   812  			case *ssa.Function:
   813  				obj = a.makeFunctionObject(v, nil)
   814  
   815  			case *ssa.Const:
   816  				// not addressable
   817  
   818  			case *ssa.FreeVar:
   819  				// not addressable
   820  			}
   821  
   822  			if a.log != nil {
   823  				fmt.Fprintf(a.log, "\tglobalobj[%s] = n%d\n", v, obj)
   824  			}
   825  			a.globalobj[v] = obj
   826  		}
   827  		return obj
   828  	}
   829  
   830  	// Local object.
   831  	obj, ok := a.localobj[v]
   832  	if !ok {
   833  		switch v := v.(type) {
   834  		case *ssa.Alloc:
   835  			obj = a.nextNode()
   836  			a.addNodes(mustDeref(v.Type()), "alloc")
   837  			a.endObject(obj, cgn, v)
   838  
   839  		case *ssa.MakeSlice:
   840  			obj = a.nextNode()
   841  			a.addNodes(sliceToArray(v.Type()), "makeslice")
   842  			a.endObject(obj, cgn, v)
   843  
   844  		case *ssa.MakeChan:
   845  			obj = a.nextNode()
   846  			a.addNodes(v.Type().Underlying().(*types.Chan).Elem(), "makechan")
   847  			a.endObject(obj, cgn, v)
   848  
   849  		case *ssa.MakeMap:
   850  			obj = a.nextNode()
   851  			tmap := v.Type().Underlying().(*types.Map)
   852  			a.addNodes(tmap.Key(), "makemap.key")
   853  			elem := a.addNodes(tmap.Elem(), "makemap.value")
   854  
   855  			// To update the value field, MapUpdate
   856  			// generates store-with-offset constraints which
   857  			// the presolver can't model, so we must mark
   858  			// those nodes indirect.
   859  			for id, end := elem, elem+nodeid(a.sizeof(tmap.Elem())); id < end; id++ {
   860  				a.mapValues = append(a.mapValues, id)
   861  			}
   862  			a.endObject(obj, cgn, v)
   863  
   864  		case *ssa.MakeInterface:
   865  			tConc := v.X.Type()
   866  			obj = a.makeTagged(tConc, cgn, v)
   867  
   868  			// Copy the value into it, if nontrivial.
   869  			if x := a.valueNode(v.X); x != 0 {
   870  				a.copy(obj+1, x, a.sizeof(tConc))
   871  			}
   872  
   873  		case *ssa.FieldAddr:
   874  			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
   875  				obj = xobj + nodeid(a.offsetOf(mustDeref(v.X.Type()), v.Field))
   876  			}
   877  
   878  		case *ssa.IndexAddr:
   879  			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
   880  				obj = xobj + 1
   881  			}
   882  
   883  		case *ssa.Slice:
   884  			obj = a.objectNode(cgn, v.X)
   885  
   886  		case *ssa.Convert:
   887  			// TODO(adonovan): opt: handle these cases too:
   888  			// - unsafe.Pointer->*T conversion acts like Alloc
   889  			// - string->[]byte/[]rune conversion acts like MakeSlice
   890  		}
   891  
   892  		if a.log != nil {
   893  			fmt.Fprintf(a.log, "\tlocalobj[%s] = n%d\n", v.Name(), obj)
   894  		}
   895  		a.localobj[v] = obj
   896  	}
   897  	return obj
   898  }
   899  
   900  // genLoad generates constraints for result = *(ptr + val).
   901  func (a *analysis) genLoad(cgn *cgnode, result nodeid, ptr ssa.Value, offset, sizeof uint32) {
   902  	if obj := a.objectNode(cgn, ptr); obj != 0 {
   903  		// Pre-apply loadConstraint.solve().
   904  		a.copy(result, obj+nodeid(offset), sizeof)
   905  	} else {
   906  		a.load(result, a.valueNode(ptr), offset, sizeof)
   907  	}
   908  }
   909  
   910  // genOffsetAddr generates constraints for a 'v=ptr.field' (FieldAddr)
   911  // or 'v=ptr[*]' (IndexAddr) instruction v.
   912  func (a *analysis) genOffsetAddr(cgn *cgnode, v ssa.Value, ptr nodeid, offset uint32) {
   913  	dst := a.valueNode(v)
   914  	if obj := a.objectNode(cgn, v); obj != 0 {
   915  		// Pre-apply offsetAddrConstraint.solve().
   916  		a.addressOf(v.Type(), dst, obj)
   917  	} else {
   918  		a.offsetAddr(v.Type(), dst, ptr, offset)
   919  	}
   920  }
   921  
   922  // genStore generates constraints for *(ptr + offset) = val.
   923  func (a *analysis) genStore(cgn *cgnode, ptr ssa.Value, val nodeid, offset, sizeof uint32) {
   924  	if obj := a.objectNode(cgn, ptr); obj != 0 {
   925  		// Pre-apply storeConstraint.solve().
   926  		a.copy(obj+nodeid(offset), val, sizeof)
   927  	} else {
   928  		a.store(a.valueNode(ptr), val, offset, sizeof)
   929  	}
   930  }
   931  
   932  // genInstr generates constraints for instruction instr in context cgn.
   933  func (a *analysis) genInstr(cgn *cgnode, instr ssa.Instruction) {
   934  	if a.log != nil {
   935  		var prefix string
   936  		if val, ok := instr.(ssa.Value); ok {
   937  			prefix = val.Name() + " = "
   938  		}
   939  		fmt.Fprintf(a.log, "; %s%s\n", prefix, instr)
   940  	}
   941  
   942  	switch instr := instr.(type) {
   943  	case *ssa.DebugRef:
   944  		// no-op.
   945  
   946  	case *ssa.UnOp:
   947  		switch instr.Op {
   948  		case token.ARROW: // <-x
   949  			// We can ignore instr.CommaOk because the node we're
   950  			// altering is always at zero offset relative to instr
   951  			tElem := instr.X.Type().Underlying().(*types.Chan).Elem()
   952  			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(tElem))
   953  
   954  		case token.MUL: // *x
   955  			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(instr.Type()))
   956  
   957  		default:
   958  			// NOT, SUB, XOR: no-op.
   959  		}
   960  
   961  	case *ssa.BinOp:
   962  		// All no-ops.
   963  
   964  	case ssa.CallInstruction: // *ssa.Call, *ssa.Go, *ssa.Defer
   965  		a.genCall(cgn, instr)
   966  
   967  	case *ssa.ChangeType:
   968  		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
   969  
   970  	case *ssa.Convert:
   971  		a.genConv(instr, cgn)
   972  
   973  	case *ssa.Extract:
   974  		a.copy(a.valueNode(instr),
   975  			a.valueOffsetNode(instr.Tuple, instr.Index),
   976  			a.sizeof(instr.Type()))
   977  
   978  	case *ssa.FieldAddr:
   979  		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X),
   980  			a.offsetOf(mustDeref(instr.X.Type()), instr.Field))
   981  
   982  	case *ssa.IndexAddr:
   983  		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X), 1)
   984  
   985  	case *ssa.Field:
   986  		a.copy(a.valueNode(instr),
   987  			a.valueOffsetNode(instr.X, instr.Field),
   988  			a.sizeof(instr.Type()))
   989  
   990  	case *ssa.Index:
   991  		a.copy(a.valueNode(instr), 1+a.valueNode(instr.X), a.sizeof(instr.Type()))
   992  
   993  	case *ssa.Select:
   994  		recv := a.valueOffsetNode(instr, 2) // instr : (index, recvOk, recv0, ... recv_n-1)
   995  		for _, st := range instr.States {
   996  			elemSize := a.sizeof(st.Chan.Type().Underlying().(*types.Chan).Elem())
   997  			switch st.Dir {
   998  			case types.RecvOnly:
   999  				a.genLoad(cgn, recv, st.Chan, 0, elemSize)
  1000  				recv += nodeid(elemSize)
  1001  
  1002  			case types.SendOnly:
  1003  				a.genStore(cgn, st.Chan, a.valueNode(st.Send), 0, elemSize)
  1004  			}
  1005  		}
  1006  
  1007  	case *ssa.Return:
  1008  		results := a.funcResults(cgn.obj)
  1009  		for _, r := range instr.Results {
  1010  			sz := a.sizeof(r.Type())
  1011  			a.copy(results, a.valueNode(r), sz)
  1012  			results += nodeid(sz)
  1013  		}
  1014  
  1015  	case *ssa.Send:
  1016  		a.genStore(cgn, instr.Chan, a.valueNode(instr.X), 0, a.sizeof(instr.X.Type()))
  1017  
  1018  	case *ssa.Store:
  1019  		a.genStore(cgn, instr.Addr, a.valueNode(instr.Val), 0, a.sizeof(instr.Val.Type()))
  1020  
  1021  	case *ssa.Alloc, *ssa.MakeSlice, *ssa.MakeChan, *ssa.MakeMap, *ssa.MakeInterface:
  1022  		v := instr.(ssa.Value)
  1023  		a.addressOf(v.Type(), a.valueNode(v), a.objectNode(cgn, v))
  1024  
  1025  	case *ssa.ChangeInterface:
  1026  		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
  1027  
  1028  	case *ssa.TypeAssert:
  1029  		a.typeAssert(instr.AssertedType, a.valueNode(instr), a.valueNode(instr.X), true)
  1030  
  1031  	case *ssa.Slice:
  1032  		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
  1033  
  1034  	case *ssa.If, *ssa.Jump:
  1035  		// no-op.
  1036  
  1037  	case *ssa.Phi:
  1038  		sz := a.sizeof(instr.Type())
  1039  		for _, e := range instr.Edges {
  1040  			a.copy(a.valueNode(instr), a.valueNode(e), sz)
  1041  		}
  1042  
  1043  	case *ssa.MakeClosure:
  1044  		fn := instr.Fn.(*ssa.Function)
  1045  		a.copy(a.valueNode(instr), a.valueNode(fn), 1)
  1046  		// Free variables are treated like global variables.
  1047  		for i, b := range instr.Bindings {
  1048  			a.copy(a.valueNode(fn.FreeVars[i]), a.valueNode(b), a.sizeof(b.Type()))
  1049  		}
  1050  
  1051  	case *ssa.RunDefers:
  1052  		// The analysis is flow insensitive, so we just "call"
  1053  		// defers as we encounter them.
  1054  
  1055  	case *ssa.Range:
  1056  		// Do nothing.  Next{Iter: *ssa.Range} handles this case.
  1057  
  1058  	case *ssa.Next:
  1059  		if !instr.IsString { // map
  1060  			// Assumes that Next is always directly applied to a Range result.
  1061  			theMap := instr.Iter.(*ssa.Range).X
  1062  			tMap := theMap.Type().Underlying().(*types.Map)
  1063  
  1064  			ksize := a.sizeof(tMap.Key())
  1065  			vsize := a.sizeof(tMap.Elem())
  1066  
  1067  			// The k/v components of the Next tuple may each be invalid.
  1068  			tTuple := instr.Type().(*types.Tuple)
  1069  
  1070  			// Load from the map's (k,v) into the tuple's (ok, k, v).
  1071  			osrc := uint32(0) // offset within map object
  1072  			odst := uint32(1) // offset within tuple (initially just after 'ok bool')
  1073  			sz := uint32(0)   // amount to copy
  1074  
  1075  			// Is key valid?
  1076  			if tTuple.At(1).Type() != tInvalid {
  1077  				sz += ksize
  1078  			} else {
  1079  				odst += ksize
  1080  				osrc += ksize
  1081  			}
  1082  
  1083  			// Is value valid?
  1084  			if tTuple.At(2).Type() != tInvalid {
  1085  				sz += vsize
  1086  			}
  1087  
  1088  			a.genLoad(cgn, a.valueNode(instr)+nodeid(odst), theMap, osrc, sz)
  1089  		}
  1090  
  1091  	case *ssa.Lookup:
  1092  		if tMap, ok := instr.X.Type().Underlying().(*types.Map); ok {
  1093  			// CommaOk can be ignored: field 0 is a no-op.
  1094  			ksize := a.sizeof(tMap.Key())
  1095  			vsize := a.sizeof(tMap.Elem())
  1096  			a.genLoad(cgn, a.valueNode(instr), instr.X, ksize, vsize)
  1097  		}
  1098  
  1099  	case *ssa.MapUpdate:
  1100  		tmap := instr.Map.Type().Underlying().(*types.Map)
  1101  		ksize := a.sizeof(tmap.Key())
  1102  		vsize := a.sizeof(tmap.Elem())
  1103  		a.genStore(cgn, instr.Map, a.valueNode(instr.Key), 0, ksize)
  1104  		a.genStore(cgn, instr.Map, a.valueNode(instr.Value), ksize, vsize)
  1105  
  1106  	case *ssa.Panic:
  1107  		a.copy(a.panicNode, a.valueNode(instr.X), 1)
  1108  
  1109  	default:
  1110  		panic(fmt.Sprintf("unimplemented: %T", instr))
  1111  	}
  1112  }
  1113  
  1114  func (a *analysis) makeCGNode(fn *ssa.Function, obj nodeid, callersite *callsite) *cgnode {
  1115  	cgn := &cgnode{fn: fn, obj: obj, callersite: callersite}
  1116  	a.cgnodes = append(a.cgnodes, cgn)
  1117  	return cgn
  1118  }
  1119  
  1120  // genRootCalls generates the synthetic root of the callgraph and the
  1121  // initial calls from it to the analysis scope, such as main, a test
  1122  // or a library.
  1123  //
  1124  func (a *analysis) genRootCalls() *cgnode {
  1125  	r := a.prog.NewFunction("<root>", new(types.Signature), "root of callgraph")
  1126  	root := a.makeCGNode(r, 0, nil)
  1127  
  1128  	// TODO(adonovan): make an ssa utility to construct an actual
  1129  	// root function so we don't need to special-case site-less
  1130  	// call edges.
  1131  
  1132  	// For each main package, call main.init(), main.main().
  1133  	for _, mainPkg := range a.config.Mains {
  1134  		main := mainPkg.Func("main")
  1135  		if main == nil {
  1136  			panic(fmt.Sprintf("%s has no main function", mainPkg))
  1137  		}
  1138  
  1139  		targets := a.addOneNode(main.Signature, "root.targets", nil)
  1140  		site := &callsite{targets: targets}
  1141  		root.sites = append(root.sites, site)
  1142  		for _, fn := range [2]*ssa.Function{mainPkg.Func("init"), main} {
  1143  			if a.log != nil {
  1144  				fmt.Fprintf(a.log, "\troot call to %s:\n", fn)
  1145  			}
  1146  			a.copy(targets, a.valueNode(fn), 1)
  1147  		}
  1148  	}
  1149  
  1150  	return root
  1151  }
  1152  
  1153  // genFunc generates constraints for function fn.
  1154  func (a *analysis) genFunc(cgn *cgnode) {
  1155  	fn := cgn.fn
  1156  
  1157  	impl := a.findIntrinsic(fn)
  1158  
  1159  	if a.log != nil {
  1160  		fmt.Fprintf(a.log, "\n\n==== Generating constraints for %s, %s\n", cgn, cgn.contour())
  1161  
  1162  		// Hack: don't display body if intrinsic.
  1163  		if impl != nil {
  1164  			fn2 := *cgn.fn // copy
  1165  			fn2.Locals = nil
  1166  			fn2.Blocks = nil
  1167  			fn2.WriteTo(a.log)
  1168  		} else {
  1169  			cgn.fn.WriteTo(a.log)
  1170  		}
  1171  	}
  1172  
  1173  	if impl != nil {
  1174  		impl(a, cgn)
  1175  		return
  1176  	}
  1177  
  1178  	if fn.Blocks == nil {
  1179  		// External function with no intrinsic treatment.
  1180  		// We'll warn about calls to such functions at the end.
  1181  		return
  1182  	}
  1183  
  1184  	if a.log != nil {
  1185  		fmt.Fprintln(a.log, "; Creating nodes for local values")
  1186  	}
  1187  
  1188  	a.localval = make(map[ssa.Value]nodeid)
  1189  	a.localobj = make(map[ssa.Value]nodeid)
  1190  
  1191  	// The value nodes for the params are in the func object block.
  1192  	params := a.funcParams(cgn.obj)
  1193  	for _, p := range fn.Params {
  1194  		a.setValueNode(p, params, cgn)
  1195  		params += nodeid(a.sizeof(p.Type()))
  1196  	}
  1197  
  1198  	// Free variables have global cardinality:
  1199  	// the outer function sets them with MakeClosure;
  1200  	// the inner function accesses them with FreeVar.
  1201  	//
  1202  	// TODO(adonovan): treat free vars context-sensitively.
  1203  
  1204  	// Create value nodes for all value instructions
  1205  	// since SSA may contain forward references.
  1206  	var space [10]*ssa.Value
  1207  	for _, b := range fn.Blocks {
  1208  		for _, instr := range b.Instrs {
  1209  			switch instr := instr.(type) {
  1210  			case *ssa.Range:
  1211  				// do nothing: it has a funky type,
  1212  				// and *ssa.Next does all the work.
  1213  
  1214  			case ssa.Value:
  1215  				var comment string
  1216  				if a.log != nil {
  1217  					comment = instr.Name()
  1218  				}
  1219  				id := a.addNodes(instr.Type(), comment)
  1220  				a.setValueNode(instr, id, cgn)
  1221  			}
  1222  
  1223  			// Record all address-taken functions (for presolver).
  1224  			rands := instr.Operands(space[:0])
  1225  			if call, ok := instr.(ssa.CallInstruction); ok && !call.Common().IsInvoke() {
  1226  				// Skip CallCommon.Value in "call" mode.
  1227  				// TODO(adonovan): fix: relies on unspecified ordering.  Specify it.
  1228  				rands = rands[1:]
  1229  			}
  1230  			for _, rand := range rands {
  1231  				if atf, ok := (*rand).(*ssa.Function); ok {
  1232  					a.atFuncs[atf] = true
  1233  				}
  1234  			}
  1235  		}
  1236  	}
  1237  
  1238  	// Generate constraints for instructions.
  1239  	for _, b := range fn.Blocks {
  1240  		for _, instr := range b.Instrs {
  1241  			a.genInstr(cgn, instr)
  1242  		}
  1243  	}
  1244  
  1245  	a.localval = nil
  1246  	a.localobj = nil
  1247  }
  1248  
  1249  // genMethodsOf generates nodes and constraints for all methods of type T.
  1250  func (a *analysis) genMethodsOf(T types.Type) {
  1251  	itf := isInterface(T)
  1252  
  1253  	// TODO(adonovan): can we skip this entirely if itf is true?
  1254  	// I think so, but the answer may depend on reflection.
  1255  	mset := a.prog.MethodSets.MethodSet(T)
  1256  	for i, n := 0, mset.Len(); i < n; i++ {
  1257  		m := a.prog.MethodValue(mset.At(i))
  1258  		a.valueNode(m)
  1259  
  1260  		if !itf {
  1261  			// Methods of concrete types are address-taken functions.
  1262  			a.atFuncs[m] = true
  1263  		}
  1264  	}
  1265  }
  1266  
  1267  // generate generates offline constraints for the entire program.
  1268  func (a *analysis) generate() {
  1269  	start("Constraint generation")
  1270  	if a.log != nil {
  1271  		fmt.Fprintln(a.log, "==== Generating constraints")
  1272  	}
  1273  
  1274  	// Create a dummy node since we use the nodeid 0 for
  1275  	// non-pointerlike variables.
  1276  	a.addNodes(tInvalid, "(zero)")
  1277  
  1278  	// Create the global node for panic values.
  1279  	a.panicNode = a.addNodes(tEface, "panic")
  1280  
  1281  	// Create nodes and constraints for all methods of reflect.rtype.
  1282  	// (Shared contours are used by dynamic calls to reflect.Type
  1283  	// methods---typically just String().)
  1284  	if rtype := a.reflectRtypePtr; rtype != nil {
  1285  		a.genMethodsOf(rtype)
  1286  	}
  1287  
  1288  	root := a.genRootCalls()
  1289  
  1290  	if a.config.BuildCallGraph {
  1291  		a.result.CallGraph = callgraph.New(root.fn)
  1292  	}
  1293  
  1294  	// Create nodes and constraints for all methods of all types
  1295  	// that are dynamically accessible via reflection or interfaces.
  1296  	for _, T := range a.prog.RuntimeTypes() {
  1297  		a.genMethodsOf(T)
  1298  	}
  1299  
  1300  	// Generate constraints for functions as they become reachable
  1301  	// from the roots.  (No constraints are generated for functions
  1302  	// that are dead in this analysis scope.)
  1303  	for len(a.genq) > 0 {
  1304  		cgn := a.genq[0]
  1305  		a.genq = a.genq[1:]
  1306  		a.genFunc(cgn)
  1307  	}
  1308  
  1309  	// The runtime magically allocates os.Args; so should we.
  1310  	if os := a.prog.ImportedPackage("os"); os != nil {
  1311  		// In effect:  os.Args = new([1]string)[:]
  1312  		T := types.NewSlice(types.Typ[types.String])
  1313  		obj := a.addNodes(sliceToArray(T), "<command-line args>")
  1314  		a.endObject(obj, nil, "<command-line args>")
  1315  		a.addressOf(T, a.objectNode(nil, os.Var("Args")), obj)
  1316  	}
  1317  
  1318  	// Discard generation state, to avoid confusion after node renumbering.
  1319  	a.panicNode = 0
  1320  	a.globalval = nil
  1321  	a.localval = nil
  1322  	a.localobj = nil
  1323  
  1324  	stop("Constraint generation")
  1325  }