gopkg.in/alecthomas/gometalinter.v3@v3.0.0/_linters/src/golang.org/x/tools/go/pointer/hvn.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package pointer
     6  
     7  // This file implements Hash-Value Numbering (HVN), a pre-solver
     8  // constraint optimization described in Hardekopf & Lin, SAS'07 (see
     9  // doc.go) that analyses the graph topology to determine which sets of
    10  // variables are "pointer equivalent" (PE), i.e. must have identical
    11  // points-to sets in the solution.
    12  //
    13  // A separate ("offline") graph is constructed.  Its nodes are those of
    14  // the main-graph, plus an additional node *X for each pointer node X.
    15  // With this graph we can reason about the unknown points-to set of
    16  // dereferenced pointers.  (We do not generalize this to represent
    17  // unknown fields x->f, perhaps because such fields would be numerous,
    18  // though it might be worth an experiment.)
    19  //
    20  // Nodes whose points-to relations are not entirely captured by the
    21  // graph are marked as "indirect": the *X nodes, the parameters of
    22  // address-taken functions (which includes all functions in method
    23  // sets), or nodes updated by the solver rules for reflection, etc.
    24  //
    25  // All addr (y=&x) nodes are initially assigned a pointer-equivalence
    26  // (PE) label equal to x's nodeid in the main graph.  (These are the
    27  // only PE labels that are less than len(a.nodes).)
    28  //
    29  // All offsetAddr (y=&x.f) constraints are initially assigned a PE
    30  // label; such labels are memoized, keyed by (x, f), so that equivalent
    31  // nodes y as assigned the same label.
    32  //
    33  // Then we process each strongly connected component (SCC) of the graph
    34  // in topological order, assigning it a PE label based on the set P of
    35  // PE labels that flow to it from its immediate dependencies.
    36  //
    37  // If any node in P is "indirect", the entire SCC is assigned a fresh PE
    38  // label.  Otherwise:
    39  //
    40  // |P|=0  if P is empty, all nodes in the SCC are non-pointers (e.g.
    41  //        uninitialized variables, or formal params of dead functions)
    42  //        and the SCC is assigned the PE label of zero.
    43  //
    44  // |P|=1  if P is a singleton, the SCC is assigned the same label as the
    45  //        sole element of P.
    46  //
    47  // |P|>1  if P contains multiple labels, a unique label representing P is
    48  //        invented and recorded in an hash table, so that other
    49  //        equivalent SCCs may also be assigned this label, akin to
    50  //        conventional hash-value numbering in a compiler.
    51  //
    52  // Finally, a renumbering is computed such that each node is replaced by
    53  // the lowest-numbered node with the same PE label.  All constraints are
    54  // renumbered, and any resulting duplicates are eliminated.
    55  //
    56  // The only nodes that are not renumbered are the objects x in addr
    57  // (y=&x) constraints, since the ids of these nodes (and fields derived
    58  // from them via offsetAddr rules) are the elements of all points-to
    59  // sets, so they must remain as they are if we want the same solution.
    60  //
    61  // The solverStates (node.solve) for nodes in the same equivalence class
    62  // are linked together so that all nodes in the class have the same
    63  // solution.  This avoids the need to renumber nodeids buried in
    64  // Queries, cgnodes, etc (like (*analysis).renumber() does) since only
    65  // the solution is needed.
    66  //
    67  // The result of HVN is that the number of distinct nodes and
    68  // constraints is reduced, but the solution is identical (almost---see
    69  // CROSS-CHECK below).  In particular, both linear and cyclic chains of
    70  // copies are each replaced by a single node.
    71  //
    72  // Nodes and constraints created "online" (e.g. while solving reflection
    73  // constraints) are not subject to this optimization.
    74  //
    75  // PERFORMANCE
    76  //
    77  // In two benchmarks (guru and godoc), HVN eliminates about two thirds
    78  // of nodes, the majority accounted for by non-pointers: nodes of
    79  // non-pointer type, pointers that remain nil, formal parameters of dead
    80  // functions, nodes of untracked types, etc.  It also reduces the number
    81  // of constraints, also by about two thirds, and the solving time by
    82  // 30--42%, although we must pay about 15% for the running time of HVN
    83  // itself.  The benefit is greater for larger applications.
    84  //
    85  // There are many possible optimizations to improve the performance:
    86  // * Use fewer than 1:1 onodes to main graph nodes: many of the onodes
    87  //   we create are not needed.
    88  // * HU (HVN with Union---see paper): coalesce "union" peLabels when
    89  //   their expanded-out sets are equal.
    90  // * HR (HVN with deReference---see paper): this will require that we
    91  //   apply HVN until fixed point, which may need more bookkeeping of the
    92  //   correspondance of main nodes to onodes.
    93  // * Location Equivalence (see paper): have points-to sets contain not
    94  //   locations but location-equivalence class labels, each representing
    95  //   a set of locations.
    96  // * HVN with field-sensitive ref: model each of the fields of a
    97  //   pointer-to-struct.
    98  //
    99  // CROSS-CHECK
   100  //
   101  // To verify the soundness of the optimization, when the
   102  // debugHVNCrossCheck option is enabled, we run the solver twice, once
   103  // before and once after running HVN, dumping the solution to disk, and
   104  // then we compare the results.  If they are not identical, the analysis
   105  // panics.
   106  //
   107  // The solution dumped to disk includes only the N*N submatrix of the
   108  // complete solution where N is the number of nodes after generation.
   109  // In other words, we ignore pointer variables and objects created by
   110  // the solver itself, since their numbering depends on the solver order,
   111  // which is affected by the optimization.  In any case, that's the only
   112  // part the client cares about.
   113  //
   114  // The cross-check is too strict and may fail spuriously.  Although the
   115  // H&L paper describing HVN states that the solutions obtained should be
   116  // identical, this is not the case in practice because HVN can collapse
   117  // cycles involving *p even when pts(p)={}.  Consider this example
   118  // distilled from testdata/hello.go:
   119  //
   120  //	var x T
   121  //	func f(p **T) {
   122  //		t0 = *p
   123  //		...
   124  //		t1 = φ(t0, &x)
   125  //		*p = t1
   126  //	}
   127  //
   128  // If f is dead code, we get:
   129  // 	unoptimized:  pts(p)={} pts(t0)={} pts(t1)={&x}
   130  // 	optimized:    pts(p)={} pts(t0)=pts(t1)=pts(*p)={&x}
   131  //
   132  // It's hard to argue that this is a bug: the result is sound and the
   133  // loss of precision is inconsequential---f is dead code, after all.
   134  // But unfortunately it limits the usefulness of the cross-check since
   135  // failures must be carefully analyzed.  Ben Hardekopf suggests (in
   136  // personal correspondence) some approaches to mitigating it:
   137  //
   138  // 	If there is a node with an HVN points-to set that is a superset
   139  // 	of the NORM points-to set, then either it's a bug or it's a
   140  // 	result of this issue. If it's a result of this issue, then in
   141  // 	the offline constraint graph there should be a REF node inside
   142  // 	some cycle that reaches this node, and in the NORM solution the
   143  // 	pointer being dereferenced by that REF node should be the empty
   144  // 	set. If that isn't true then this is a bug. If it is true, then
   145  // 	you can further check that in the NORM solution the "extra"
   146  // 	points-to info in the HVN solution does in fact come from that
   147  // 	purported cycle (if it doesn't, then this is still a bug). If
   148  // 	you're doing the further check then you'll need to do it for
   149  // 	each "extra" points-to element in the HVN points-to set.
   150  //
   151  // 	There are probably ways to optimize these checks by taking
   152  // 	advantage of graph properties. For example, extraneous points-to
   153  // 	info will flow through the graph and end up in many
   154  // 	nodes. Rather than checking every node with extra info, you
   155  // 	could probably work out the "origin point" of the extra info and
   156  // 	just check there. Note that the check in the first bullet is
   157  // 	looking for soundness bugs, while the check in the second bullet
   158  // 	is looking for precision bugs; depending on your needs, you may
   159  // 	care more about one than the other.
   160  //
   161  // which we should evaluate.  The cross-check is nonetheless invaluable
   162  // for all but one of the programs in the pointer_test suite.
   163  
   164  import (
   165  	"fmt"
   166  	"go/types"
   167  	"io"
   168  	"reflect"
   169  
   170  	"golang.org/x/tools/container/intsets"
   171  )
   172  
   173  // A peLabel is a pointer-equivalence label: two nodes with the same
   174  // peLabel have identical points-to solutions.
   175  //
   176  // The numbers are allocated consecutively like so:
   177  // 	0	not a pointer
   178  //	1..N-1	addrConstraints (equals the constraint's .src field, hence sparse)
   179  //	...	offsetAddr constraints
   180  //	...	SCCs (with indirect nodes or multiple inputs)
   181  //
   182  // Each PE label denotes a set of pointers containing a single addr, a
   183  // single offsetAddr, or some set of other PE labels.
   184  //
   185  type peLabel int
   186  
   187  type hvn struct {
   188  	a        *analysis
   189  	N        int                // len(a.nodes) immediately after constraint generation
   190  	log      io.Writer          // (optional) log of HVN lemmas
   191  	onodes   []*onode           // nodes of the offline graph
   192  	label    peLabel            // the next available PE label
   193  	hvnLabel map[string]peLabel // hash-value numbering (PE label) for each set of onodeids
   194  	stack    []onodeid          // DFS stack
   195  	index    int32              // next onode.index, from Tarjan's SCC algorithm
   196  
   197  	// For each distinct offsetAddrConstraint (src, offset) pair,
   198  	// offsetAddrLabels records a unique PE label >= N.
   199  	offsetAddrLabels map[offsetAddr]peLabel
   200  }
   201  
   202  // The index of an node in the offline graph.
   203  // (Currently the first N align with the main nodes,
   204  // but this may change with HRU.)
   205  type onodeid uint32
   206  
   207  // An onode is a node in the offline constraint graph.
   208  // (Where ambiguous, members of analysis.nodes are referred to as
   209  // "main graph" nodes.)
   210  //
   211  // Edges in the offline constraint graph (edges and implicit) point to
   212  // the source, i.e. against the flow of values: they are dependencies.
   213  // Implicit edges are used for SCC computation, but not for gathering
   214  // incoming labels.
   215  //
   216  type onode struct {
   217  	rep onodeid // index of representative of SCC in offline constraint graph
   218  
   219  	edges    intsets.Sparse // constraint edges X-->Y (this onode is X)
   220  	implicit intsets.Sparse // implicit edges *X-->*Y (this onode is X)
   221  	peLabels intsets.Sparse // set of peLabels are pointer-equivalent to this one
   222  	indirect bool           // node has points-to relations not represented in graph
   223  
   224  	// Tarjan's SCC algorithm
   225  	index, lowlink int32 // Tarjan numbering
   226  	scc            int32 // -ve => on stack; 0 => unvisited; +ve => node is root of a found SCC
   227  }
   228  
   229  type offsetAddr struct {
   230  	ptr    nodeid
   231  	offset uint32
   232  }
   233  
   234  // nextLabel issues the next unused pointer-equivalence label.
   235  func (h *hvn) nextLabel() peLabel {
   236  	h.label++
   237  	return h.label
   238  }
   239  
   240  // ref(X) returns the index of the onode for *X.
   241  func (h *hvn) ref(id onodeid) onodeid {
   242  	return id + onodeid(len(h.a.nodes))
   243  }
   244  
   245  // hvn computes pointer-equivalence labels (peLabels) using the Hash-based
   246  // Value Numbering (HVN) algorithm described in Hardekopf & Lin, SAS'07.
   247  //
   248  func (a *analysis) hvn() {
   249  	start("HVN")
   250  
   251  	if a.log != nil {
   252  		fmt.Fprintf(a.log, "\n\n==== Pointer equivalence optimization\n\n")
   253  	}
   254  
   255  	h := hvn{
   256  		a:                a,
   257  		N:                len(a.nodes),
   258  		log:              a.log,
   259  		hvnLabel:         make(map[string]peLabel),
   260  		offsetAddrLabels: make(map[offsetAddr]peLabel),
   261  	}
   262  
   263  	if h.log != nil {
   264  		fmt.Fprintf(h.log, "\nCreating offline graph nodes...\n")
   265  	}
   266  
   267  	// Create offline nodes.  The first N nodes correspond to main
   268  	// graph nodes; the next N are their corresponding ref() nodes.
   269  	h.onodes = make([]*onode, 2*h.N)
   270  	for id := range a.nodes {
   271  		id := onodeid(id)
   272  		h.onodes[id] = &onode{}
   273  		h.onodes[h.ref(id)] = &onode{indirect: true}
   274  	}
   275  
   276  	// Each node initially represents just itself.
   277  	for id, o := range h.onodes {
   278  		o.rep = onodeid(id)
   279  	}
   280  
   281  	h.markIndirectNodes()
   282  
   283  	// Reserve the first N PE labels for addrConstraints.
   284  	h.label = peLabel(h.N)
   285  
   286  	// Add offline constraint edges.
   287  	if h.log != nil {
   288  		fmt.Fprintf(h.log, "\nAdding offline graph edges...\n")
   289  	}
   290  	for _, c := range a.constraints {
   291  		if debugHVNVerbose && h.log != nil {
   292  			fmt.Fprintf(h.log, "; %s\n", c)
   293  		}
   294  		c.presolve(&h)
   295  	}
   296  
   297  	// Find and collapse SCCs.
   298  	if h.log != nil {
   299  		fmt.Fprintf(h.log, "\nFinding SCCs...\n")
   300  	}
   301  	h.index = 1
   302  	for id, o := range h.onodes {
   303  		if id > 0 && o.index == 0 {
   304  			// Start depth-first search at each unvisited node.
   305  			h.visit(onodeid(id))
   306  		}
   307  	}
   308  
   309  	// Dump the solution
   310  	// (NB: somewhat redundant with logging from simplify().)
   311  	if debugHVNVerbose && h.log != nil {
   312  		fmt.Fprintf(h.log, "\nPointer equivalences:\n")
   313  		for id, o := range h.onodes {
   314  			if id == 0 {
   315  				continue
   316  			}
   317  			if id == int(h.N) {
   318  				fmt.Fprintf(h.log, "---\n")
   319  			}
   320  			fmt.Fprintf(h.log, "o%d\t", id)
   321  			if o.rep != onodeid(id) {
   322  				fmt.Fprintf(h.log, "rep=o%d", o.rep)
   323  			} else {
   324  				fmt.Fprintf(h.log, "p%d", o.peLabels.Min())
   325  				if o.indirect {
   326  					fmt.Fprint(h.log, " indirect")
   327  				}
   328  			}
   329  			fmt.Fprintln(h.log)
   330  		}
   331  	}
   332  
   333  	// Simplify the main constraint graph
   334  	h.simplify()
   335  
   336  	a.showCounts()
   337  
   338  	stop("HVN")
   339  }
   340  
   341  // ---- constraint-specific rules ----
   342  
   343  // dst := &src
   344  func (c *addrConstraint) presolve(h *hvn) {
   345  	// Each object (src) is an initial PE label.
   346  	label := peLabel(c.src) // label < N
   347  	if debugHVNVerbose && h.log != nil {
   348  		// duplicate log messages are possible
   349  		fmt.Fprintf(h.log, "\tcreate p%d: {&n%d}\n", label, c.src)
   350  	}
   351  	odst := onodeid(c.dst)
   352  	osrc := onodeid(c.src)
   353  
   354  	// Assign dst this label.
   355  	h.onodes[odst].peLabels.Insert(int(label))
   356  	if debugHVNVerbose && h.log != nil {
   357  		fmt.Fprintf(h.log, "\to%d has p%d\n", odst, label)
   358  	}
   359  
   360  	h.addImplicitEdge(h.ref(odst), osrc) // *dst ~~> src.
   361  }
   362  
   363  // dst = src
   364  func (c *copyConstraint) presolve(h *hvn) {
   365  	odst := onodeid(c.dst)
   366  	osrc := onodeid(c.src)
   367  	h.addEdge(odst, osrc)                       //  dst -->  src
   368  	h.addImplicitEdge(h.ref(odst), h.ref(osrc)) // *dst ~~> *src
   369  }
   370  
   371  // dst = *src + offset
   372  func (c *loadConstraint) presolve(h *hvn) {
   373  	odst := onodeid(c.dst)
   374  	osrc := onodeid(c.src)
   375  	if c.offset == 0 {
   376  		h.addEdge(odst, h.ref(osrc)) // dst --> *src
   377  	} else {
   378  		// We don't interpret load-with-offset, e.g. results
   379  		// of map value lookup, R-block of dynamic call, slice
   380  		// copy/append, reflection.
   381  		h.markIndirect(odst, "load with offset")
   382  	}
   383  }
   384  
   385  // *dst + offset = src
   386  func (c *storeConstraint) presolve(h *hvn) {
   387  	odst := onodeid(c.dst)
   388  	osrc := onodeid(c.src)
   389  	if c.offset == 0 {
   390  		h.onodes[h.ref(odst)].edges.Insert(int(osrc)) // *dst --> src
   391  		if debugHVNVerbose && h.log != nil {
   392  			fmt.Fprintf(h.log, "\to%d --> o%d\n", h.ref(odst), osrc)
   393  		}
   394  	} else {
   395  		// We don't interpret store-with-offset.
   396  		// See discussion of soundness at markIndirectNodes.
   397  	}
   398  }
   399  
   400  // dst = &src.offset
   401  func (c *offsetAddrConstraint) presolve(h *hvn) {
   402  	// Give each distinct (addr, offset) pair a fresh PE label.
   403  	// The cache performs CSE, effectively.
   404  	key := offsetAddr{c.src, c.offset}
   405  	label, ok := h.offsetAddrLabels[key]
   406  	if !ok {
   407  		label = h.nextLabel()
   408  		h.offsetAddrLabels[key] = label
   409  		if debugHVNVerbose && h.log != nil {
   410  			fmt.Fprintf(h.log, "\tcreate p%d: {&n%d.#%d}\n",
   411  				label, c.src, c.offset)
   412  		}
   413  	}
   414  
   415  	// Assign dst this label.
   416  	h.onodes[c.dst].peLabels.Insert(int(label))
   417  	if debugHVNVerbose && h.log != nil {
   418  		fmt.Fprintf(h.log, "\to%d has p%d\n", c.dst, label)
   419  	}
   420  }
   421  
   422  // dst = src.(typ)  where typ is an interface
   423  func (c *typeFilterConstraint) presolve(h *hvn) {
   424  	h.markIndirect(onodeid(c.dst), "typeFilter result")
   425  }
   426  
   427  // dst = src.(typ)  where typ is concrete
   428  func (c *untagConstraint) presolve(h *hvn) {
   429  	odst := onodeid(c.dst)
   430  	for end := odst + onodeid(h.a.sizeof(c.typ)); odst < end; odst++ {
   431  		h.markIndirect(odst, "untag result")
   432  	}
   433  }
   434  
   435  // dst = src.method(c.params...)
   436  func (c *invokeConstraint) presolve(h *hvn) {
   437  	// All methods are address-taken functions, so
   438  	// their formal P-blocks were already marked indirect.
   439  
   440  	// Mark the caller's targets node as indirect.
   441  	sig := c.method.Type().(*types.Signature)
   442  	id := c.params
   443  	h.markIndirect(onodeid(c.params), "invoke targets node")
   444  	id++
   445  
   446  	id += nodeid(h.a.sizeof(sig.Params()))
   447  
   448  	// Mark the caller's R-block as indirect.
   449  	end := id + nodeid(h.a.sizeof(sig.Results()))
   450  	for id < end {
   451  		h.markIndirect(onodeid(id), "invoke R-block")
   452  		id++
   453  	}
   454  }
   455  
   456  // markIndirectNodes marks as indirect nodes whose points-to relations
   457  // are not entirely captured by the offline graph, including:
   458  //
   459  //    (a) All address-taken nodes (including the following nodes within
   460  //        the same object).  This is described in the paper.
   461  //
   462  // The most subtle cause of indirect nodes is the generation of
   463  // store-with-offset constraints since the offline graph doesn't
   464  // represent them.  A global audit of constraint generation reveals the
   465  // following uses of store-with-offset:
   466  //
   467  //    (b) genDynamicCall, for P-blocks of dynamically called functions,
   468  //        to which dynamic copy edges will be added to them during
   469  //        solving: from storeConstraint for standalone functions,
   470  //        and from invokeConstraint for methods.
   471  //        All such P-blocks must be marked indirect.
   472  //    (c) MakeUpdate, to update the value part of a map object.
   473  //        All MakeMap objects's value parts must be marked indirect.
   474  //    (d) copyElems, to update the destination array.
   475  //        All array elements must be marked indirect.
   476  //
   477  // Not all indirect marking happens here.  ref() nodes are marked
   478  // indirect at construction, and each constraint's presolve() method may
   479  // mark additional nodes.
   480  //
   481  func (h *hvn) markIndirectNodes() {
   482  	// (a) all address-taken nodes, plus all nodes following them
   483  	//     within the same object, since these may be indirectly
   484  	//     stored or address-taken.
   485  	for _, c := range h.a.constraints {
   486  		if c, ok := c.(*addrConstraint); ok {
   487  			start := h.a.enclosingObj(c.src)
   488  			end := start + nodeid(h.a.nodes[start].obj.size)
   489  			for id := c.src; id < end; id++ {
   490  				h.markIndirect(onodeid(id), "A-T object")
   491  			}
   492  		}
   493  	}
   494  
   495  	// (b) P-blocks of all address-taken functions.
   496  	for id := 0; id < h.N; id++ {
   497  		obj := h.a.nodes[id].obj
   498  
   499  		// TODO(adonovan): opt: if obj.cgn.fn is a method and
   500  		// obj.cgn is not its shared contour, this is an
   501  		// "inlined" static method call.  We needn't consider it
   502  		// address-taken since no invokeConstraint will affect it.
   503  
   504  		if obj != nil && obj.flags&otFunction != 0 && h.a.atFuncs[obj.cgn.fn] {
   505  			// address-taken function
   506  			if debugHVNVerbose && h.log != nil {
   507  				fmt.Fprintf(h.log, "n%d is address-taken: %s\n", id, obj.cgn.fn)
   508  			}
   509  			h.markIndirect(onodeid(id), "A-T func identity")
   510  			id++
   511  			sig := obj.cgn.fn.Signature
   512  			psize := h.a.sizeof(sig.Params())
   513  			if sig.Recv() != nil {
   514  				psize += h.a.sizeof(sig.Recv().Type())
   515  			}
   516  			for end := id + int(psize); id < end; id++ {
   517  				h.markIndirect(onodeid(id), "A-T func P-block")
   518  			}
   519  			id--
   520  			continue
   521  		}
   522  	}
   523  
   524  	// (c) all map objects' value fields.
   525  	for _, id := range h.a.mapValues {
   526  		h.markIndirect(onodeid(id), "makemap.value")
   527  	}
   528  
   529  	// (d) all array element objects.
   530  	// TODO(adonovan): opt: can we do better?
   531  	for id := 0; id < h.N; id++ {
   532  		// Identity node for an object of array type?
   533  		if tArray, ok := h.a.nodes[id].typ.(*types.Array); ok {
   534  			// Mark the array element nodes indirect.
   535  			// (Skip past the identity field.)
   536  			for range h.a.flatten(tArray.Elem()) {
   537  				id++
   538  				h.markIndirect(onodeid(id), "array elem")
   539  			}
   540  		}
   541  	}
   542  }
   543  
   544  func (h *hvn) markIndirect(oid onodeid, comment string) {
   545  	h.onodes[oid].indirect = true
   546  	if debugHVNVerbose && h.log != nil {
   547  		fmt.Fprintf(h.log, "\to%d is indirect: %s\n", oid, comment)
   548  	}
   549  }
   550  
   551  // Adds an edge dst-->src.
   552  // Note the unusual convention: edges are dependency (contraflow) edges.
   553  func (h *hvn) addEdge(odst, osrc onodeid) {
   554  	h.onodes[odst].edges.Insert(int(osrc))
   555  	if debugHVNVerbose && h.log != nil {
   556  		fmt.Fprintf(h.log, "\to%d --> o%d\n", odst, osrc)
   557  	}
   558  }
   559  
   560  func (h *hvn) addImplicitEdge(odst, osrc onodeid) {
   561  	h.onodes[odst].implicit.Insert(int(osrc))
   562  	if debugHVNVerbose && h.log != nil {
   563  		fmt.Fprintf(h.log, "\to%d ~~> o%d\n", odst, osrc)
   564  	}
   565  }
   566  
   567  // visit implements the depth-first search of Tarjan's SCC algorithm.
   568  // Precondition: x is canonical.
   569  func (h *hvn) visit(x onodeid) {
   570  	h.checkCanonical(x)
   571  	xo := h.onodes[x]
   572  	xo.index = h.index
   573  	xo.lowlink = h.index
   574  	h.index++
   575  
   576  	h.stack = append(h.stack, x) // push
   577  	assert(xo.scc == 0, "node revisited")
   578  	xo.scc = -1
   579  
   580  	var deps []int
   581  	deps = xo.edges.AppendTo(deps)
   582  	deps = xo.implicit.AppendTo(deps)
   583  
   584  	for _, y := range deps {
   585  		// Loop invariant: x is canonical.
   586  
   587  		y := h.find(onodeid(y))
   588  
   589  		if x == y {
   590  			continue // nodes already coalesced
   591  		}
   592  
   593  		xo := h.onodes[x]
   594  		yo := h.onodes[y]
   595  
   596  		switch {
   597  		case yo.scc > 0:
   598  			// y is already a collapsed SCC
   599  
   600  		case yo.scc < 0:
   601  			// y is on the stack, and thus in the current SCC.
   602  			if yo.index < xo.lowlink {
   603  				xo.lowlink = yo.index
   604  			}
   605  
   606  		default:
   607  			// y is unvisited; visit it now.
   608  			h.visit(y)
   609  			// Note: x and y are now non-canonical.
   610  
   611  			x = h.find(onodeid(x))
   612  
   613  			if yo.lowlink < xo.lowlink {
   614  				xo.lowlink = yo.lowlink
   615  			}
   616  		}
   617  	}
   618  	h.checkCanonical(x)
   619  
   620  	// Is x the root of an SCC?
   621  	if xo.lowlink == xo.index {
   622  		// Coalesce all nodes in the SCC.
   623  		if debugHVNVerbose && h.log != nil {
   624  			fmt.Fprintf(h.log, "scc o%d\n", x)
   625  		}
   626  		for {
   627  			// Pop y from stack.
   628  			i := len(h.stack) - 1
   629  			y := h.stack[i]
   630  			h.stack = h.stack[:i]
   631  
   632  			h.checkCanonical(x)
   633  			xo := h.onodes[x]
   634  			h.checkCanonical(y)
   635  			yo := h.onodes[y]
   636  
   637  			if xo == yo {
   638  				// SCC is complete.
   639  				xo.scc = 1
   640  				h.labelSCC(x)
   641  				break
   642  			}
   643  			h.coalesce(x, y)
   644  		}
   645  	}
   646  }
   647  
   648  // Precondition: x is canonical.
   649  func (h *hvn) labelSCC(x onodeid) {
   650  	h.checkCanonical(x)
   651  	xo := h.onodes[x]
   652  	xpe := &xo.peLabels
   653  
   654  	// All indirect nodes get new labels.
   655  	if xo.indirect {
   656  		label := h.nextLabel()
   657  		if debugHVNVerbose && h.log != nil {
   658  			fmt.Fprintf(h.log, "\tcreate p%d: indirect SCC\n", label)
   659  			fmt.Fprintf(h.log, "\to%d has p%d\n", x, label)
   660  		}
   661  
   662  		// Remove pre-labeling, in case a direct pre-labeled node was
   663  		// merged with an indirect one.
   664  		xpe.Clear()
   665  		xpe.Insert(int(label))
   666  
   667  		return
   668  	}
   669  
   670  	// Invariant: all peLabels sets are non-empty.
   671  	// Those that are logically empty contain zero as their sole element.
   672  	// No other sets contains zero.
   673  
   674  	// Find all labels coming in to the coalesced SCC node.
   675  	for _, y := range xo.edges.AppendTo(nil) {
   676  		y := h.find(onodeid(y))
   677  		if y == x {
   678  			continue // already coalesced
   679  		}
   680  		ype := &h.onodes[y].peLabels
   681  		if debugHVNVerbose && h.log != nil {
   682  			fmt.Fprintf(h.log, "\tedge from o%d = %s\n", y, ype)
   683  		}
   684  
   685  		if ype.IsEmpty() {
   686  			if debugHVNVerbose && h.log != nil {
   687  				fmt.Fprintf(h.log, "\tnode has no PE label\n")
   688  			}
   689  		}
   690  		assert(!ype.IsEmpty(), "incoming node has no PE label")
   691  
   692  		if ype.Has(0) {
   693  			// {0} represents a non-pointer.
   694  			assert(ype.Len() == 1, "PE set contains {0, ...}")
   695  		} else {
   696  			xpe.UnionWith(ype)
   697  		}
   698  	}
   699  
   700  	switch xpe.Len() {
   701  	case 0:
   702  		// SCC has no incoming non-zero PE labels: it is a non-pointer.
   703  		xpe.Insert(0)
   704  
   705  	case 1:
   706  		// already a singleton
   707  
   708  	default:
   709  		// SCC has multiple incoming non-zero PE labels.
   710  		// Find the canonical label representing this set.
   711  		// We use String() as a fingerprint consistent with Equals().
   712  		key := xpe.String()
   713  		label, ok := h.hvnLabel[key]
   714  		if !ok {
   715  			label = h.nextLabel()
   716  			if debugHVNVerbose && h.log != nil {
   717  				fmt.Fprintf(h.log, "\tcreate p%d: union %s\n", label, xpe.String())
   718  			}
   719  			h.hvnLabel[key] = label
   720  		}
   721  		xpe.Clear()
   722  		xpe.Insert(int(label))
   723  	}
   724  
   725  	if debugHVNVerbose && h.log != nil {
   726  		fmt.Fprintf(h.log, "\to%d has p%d\n", x, xpe.Min())
   727  	}
   728  }
   729  
   730  // coalesce combines two nodes in the offline constraint graph.
   731  // Precondition: x and y are canonical.
   732  func (h *hvn) coalesce(x, y onodeid) {
   733  	xo := h.onodes[x]
   734  	yo := h.onodes[y]
   735  
   736  	// x becomes y's canonical representative.
   737  	yo.rep = x
   738  
   739  	if debugHVNVerbose && h.log != nil {
   740  		fmt.Fprintf(h.log, "\tcoalesce o%d into o%d\n", y, x)
   741  	}
   742  
   743  	// x accumulates y's edges.
   744  	xo.edges.UnionWith(&yo.edges)
   745  	yo.edges.Clear()
   746  
   747  	// x accumulates y's implicit edges.
   748  	xo.implicit.UnionWith(&yo.implicit)
   749  	yo.implicit.Clear()
   750  
   751  	// x accumulates y's pointer-equivalence labels.
   752  	xo.peLabels.UnionWith(&yo.peLabels)
   753  	yo.peLabels.Clear()
   754  
   755  	// x accumulates y's indirect flag.
   756  	if yo.indirect {
   757  		xo.indirect = true
   758  	}
   759  }
   760  
   761  // simplify computes a degenerate renumbering of nodeids from the PE
   762  // labels assigned by the hvn, and uses it to simplify the main
   763  // constraint graph, eliminating non-pointer nodes and duplicate
   764  // constraints.
   765  //
   766  func (h *hvn) simplify() {
   767  	// canon maps each peLabel to its canonical main node.
   768  	canon := make([]nodeid, h.label)
   769  	for i := range canon {
   770  		canon[i] = nodeid(h.N) // indicates "unset"
   771  	}
   772  
   773  	// mapping maps each main node index to the index of the canonical node.
   774  	mapping := make([]nodeid, len(h.a.nodes))
   775  
   776  	for id := range h.a.nodes {
   777  		id := nodeid(id)
   778  		if id == 0 {
   779  			canon[0] = 0
   780  			mapping[0] = 0
   781  			continue
   782  		}
   783  		oid := h.find(onodeid(id))
   784  		peLabels := &h.onodes[oid].peLabels
   785  		assert(peLabels.Len() == 1, "PE class is not a singleton")
   786  		label := peLabel(peLabels.Min())
   787  
   788  		canonId := canon[label]
   789  		if canonId == nodeid(h.N) {
   790  			// id becomes the representative of the PE label.
   791  			canonId = id
   792  			canon[label] = canonId
   793  
   794  			if h.a.log != nil {
   795  				fmt.Fprintf(h.a.log, "\tpts(n%d) is canonical : \t(%s)\n",
   796  					id, h.a.nodes[id].typ)
   797  			}
   798  
   799  		} else {
   800  			// Link the solver states for the two nodes.
   801  			assert(h.a.nodes[canonId].solve != nil, "missing solver state")
   802  			h.a.nodes[id].solve = h.a.nodes[canonId].solve
   803  
   804  			if h.a.log != nil {
   805  				// TODO(adonovan): debug: reorganize the log so it prints
   806  				// one line:
   807  				// 	pe y = x1, ..., xn
   808  				// for each canonical y.  Requires allocation.
   809  				fmt.Fprintf(h.a.log, "\tpts(n%d) = pts(n%d) : %s\n",
   810  					id, canonId, h.a.nodes[id].typ)
   811  			}
   812  		}
   813  
   814  		mapping[id] = canonId
   815  	}
   816  
   817  	// Renumber the constraints, eliminate duplicates, and eliminate
   818  	// any containing non-pointers (n0).
   819  	addrs := make(map[addrConstraint]bool)
   820  	copys := make(map[copyConstraint]bool)
   821  	loads := make(map[loadConstraint]bool)
   822  	stores := make(map[storeConstraint]bool)
   823  	offsetAddrs := make(map[offsetAddrConstraint]bool)
   824  	untags := make(map[untagConstraint]bool)
   825  	typeFilters := make(map[typeFilterConstraint]bool)
   826  	invokes := make(map[invokeConstraint]bool)
   827  
   828  	nbefore := len(h.a.constraints)
   829  	cc := h.a.constraints[:0] // in-situ compaction
   830  	for _, c := range h.a.constraints {
   831  		// Renumber.
   832  		switch c := c.(type) {
   833  		case *addrConstraint:
   834  			// Don't renumber c.src since it is the label of
   835  			// an addressable object and will appear in PT sets.
   836  			c.dst = mapping[c.dst]
   837  		default:
   838  			c.renumber(mapping)
   839  		}
   840  
   841  		if c.ptr() == 0 {
   842  			continue // skip: constraint attached to non-pointer
   843  		}
   844  
   845  		var dup bool
   846  		switch c := c.(type) {
   847  		case *addrConstraint:
   848  			_, dup = addrs[*c]
   849  			addrs[*c] = true
   850  
   851  		case *copyConstraint:
   852  			if c.src == c.dst {
   853  				continue // skip degenerate copies
   854  			}
   855  			if c.src == 0 {
   856  				continue // skip copy from non-pointer
   857  			}
   858  			_, dup = copys[*c]
   859  			copys[*c] = true
   860  
   861  		case *loadConstraint:
   862  			if c.src == 0 {
   863  				continue // skip load from non-pointer
   864  			}
   865  			_, dup = loads[*c]
   866  			loads[*c] = true
   867  
   868  		case *storeConstraint:
   869  			if c.src == 0 {
   870  				continue // skip store from non-pointer
   871  			}
   872  			_, dup = stores[*c]
   873  			stores[*c] = true
   874  
   875  		case *offsetAddrConstraint:
   876  			if c.src == 0 {
   877  				continue // skip offset from non-pointer
   878  			}
   879  			_, dup = offsetAddrs[*c]
   880  			offsetAddrs[*c] = true
   881  
   882  		case *untagConstraint:
   883  			if c.src == 0 {
   884  				continue // skip untag of non-pointer
   885  			}
   886  			_, dup = untags[*c]
   887  			untags[*c] = true
   888  
   889  		case *typeFilterConstraint:
   890  			if c.src == 0 {
   891  				continue // skip filter of non-pointer
   892  			}
   893  			_, dup = typeFilters[*c]
   894  			typeFilters[*c] = true
   895  
   896  		case *invokeConstraint:
   897  			if c.params == 0 {
   898  				panic("non-pointer invoke.params")
   899  			}
   900  			if c.iface == 0 {
   901  				continue // skip invoke on non-pointer
   902  			}
   903  			_, dup = invokes[*c]
   904  			invokes[*c] = true
   905  
   906  		default:
   907  			// We don't bother de-duping advanced constraints
   908  			// (e.g. reflection) since they are uncommon.
   909  
   910  			// Eliminate constraints containing non-pointer nodeids.
   911  			//
   912  			// We use reflection to find the fields to avoid
   913  			// adding yet another method to constraint.
   914  			//
   915  			// TODO(adonovan): experiment with a constraint
   916  			// method that returns a slice of pointers to
   917  			// nodeids fields to enable uniform iteration;
   918  			// the renumber() method could be removed and
   919  			// implemented using the new one.
   920  			//
   921  			// TODO(adonovan): opt: this is unsound since
   922  			// some constraints still have an effect if one
   923  			// of the operands is zero: rVCall, rVMapIndex,
   924  			// rvSetMapIndex.  Handle them specially.
   925  			rtNodeid := reflect.TypeOf(nodeid(0))
   926  			x := reflect.ValueOf(c).Elem()
   927  			for i, nf := 0, x.NumField(); i < nf; i++ {
   928  				f := x.Field(i)
   929  				if f.Type() == rtNodeid {
   930  					if f.Uint() == 0 {
   931  						dup = true // skip it
   932  						break
   933  					}
   934  				}
   935  			}
   936  		}
   937  		if dup {
   938  			continue // skip duplicates
   939  		}
   940  
   941  		cc = append(cc, c)
   942  	}
   943  	h.a.constraints = cc
   944  
   945  	if h.log != nil {
   946  		fmt.Fprintf(h.log, "#constraints: was %d, now %d\n", nbefore, len(h.a.constraints))
   947  	}
   948  }
   949  
   950  // find returns the canonical onodeid for x.
   951  // (The onodes form a disjoint set forest.)
   952  func (h *hvn) find(x onodeid) onodeid {
   953  	// TODO(adonovan): opt: this is a CPU hotspot.  Try "union by rank".
   954  	xo := h.onodes[x]
   955  	rep := xo.rep
   956  	if rep != x {
   957  		rep = h.find(rep) // simple path compression
   958  		xo.rep = rep
   959  	}
   960  	return rep
   961  }
   962  
   963  func (h *hvn) checkCanonical(x onodeid) {
   964  	if debugHVN {
   965  		assert(x == h.find(x), "not canonical")
   966  	}
   967  }
   968  
   969  func assert(p bool, msg string) {
   970  	if debugHVN && !p {
   971  		panic("assertion failed: " + msg)
   972  	}
   973  }