gopkg.in/alecthomas/gometalinter.v3@v3.0.0/_linters/src/golang.org/x/tools/go/ssa/func.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This file implements the Function and BasicBlock types.
     8  
     9  import (
    10  	"bytes"
    11  	"fmt"
    12  	"go/ast"
    13  	"go/token"
    14  	"go/types"
    15  	"io"
    16  	"os"
    17  	"strings"
    18  )
    19  
    20  // addEdge adds a control-flow graph edge from from to to.
    21  func addEdge(from, to *BasicBlock) {
    22  	from.Succs = append(from.Succs, to)
    23  	to.Preds = append(to.Preds, from)
    24  }
    25  
    26  // Parent returns the function that contains block b.
    27  func (b *BasicBlock) Parent() *Function { return b.parent }
    28  
    29  // String returns a human-readable label of this block.
    30  // It is not guaranteed unique within the function.
    31  //
    32  func (b *BasicBlock) String() string {
    33  	return fmt.Sprintf("%d", b.Index)
    34  }
    35  
    36  // emit appends an instruction to the current basic block.
    37  // If the instruction defines a Value, it is returned.
    38  //
    39  func (b *BasicBlock) emit(i Instruction) Value {
    40  	i.setBlock(b)
    41  	b.Instrs = append(b.Instrs, i)
    42  	v, _ := i.(Value)
    43  	return v
    44  }
    45  
    46  // predIndex returns the i such that b.Preds[i] == c or panics if
    47  // there is none.
    48  func (b *BasicBlock) predIndex(c *BasicBlock) int {
    49  	for i, pred := range b.Preds {
    50  		if pred == c {
    51  			return i
    52  		}
    53  	}
    54  	panic(fmt.Sprintf("no edge %s -> %s", c, b))
    55  }
    56  
    57  // hasPhi returns true if b.Instrs contains φ-nodes.
    58  func (b *BasicBlock) hasPhi() bool {
    59  	_, ok := b.Instrs[0].(*Phi)
    60  	return ok
    61  }
    62  
    63  // phis returns the prefix of b.Instrs containing all the block's φ-nodes.
    64  func (b *BasicBlock) phis() []Instruction {
    65  	for i, instr := range b.Instrs {
    66  		if _, ok := instr.(*Phi); !ok {
    67  			return b.Instrs[:i]
    68  		}
    69  	}
    70  	return nil // unreachable in well-formed blocks
    71  }
    72  
    73  // replacePred replaces all occurrences of p in b's predecessor list with q.
    74  // Ordinarily there should be at most one.
    75  //
    76  func (b *BasicBlock) replacePred(p, q *BasicBlock) {
    77  	for i, pred := range b.Preds {
    78  		if pred == p {
    79  			b.Preds[i] = q
    80  		}
    81  	}
    82  }
    83  
    84  // replaceSucc replaces all occurrences of p in b's successor list with q.
    85  // Ordinarily there should be at most one.
    86  //
    87  func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
    88  	for i, succ := range b.Succs {
    89  		if succ == p {
    90  			b.Succs[i] = q
    91  		}
    92  	}
    93  }
    94  
    95  // removePred removes all occurrences of p in b's
    96  // predecessor list and φ-nodes.
    97  // Ordinarily there should be at most one.
    98  //
    99  func (b *BasicBlock) removePred(p *BasicBlock) {
   100  	phis := b.phis()
   101  
   102  	// We must preserve edge order for φ-nodes.
   103  	j := 0
   104  	for i, pred := range b.Preds {
   105  		if pred != p {
   106  			b.Preds[j] = b.Preds[i]
   107  			// Strike out φ-edge too.
   108  			for _, instr := range phis {
   109  				phi := instr.(*Phi)
   110  				phi.Edges[j] = phi.Edges[i]
   111  			}
   112  			j++
   113  		}
   114  	}
   115  	// Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
   116  	for i := j; i < len(b.Preds); i++ {
   117  		b.Preds[i] = nil
   118  		for _, instr := range phis {
   119  			instr.(*Phi).Edges[i] = nil
   120  		}
   121  	}
   122  	b.Preds = b.Preds[:j]
   123  	for _, instr := range phis {
   124  		phi := instr.(*Phi)
   125  		phi.Edges = phi.Edges[:j]
   126  	}
   127  }
   128  
   129  // Destinations associated with unlabelled for/switch/select stmts.
   130  // We push/pop one of these as we enter/leave each construct and for
   131  // each BranchStmt we scan for the innermost target of the right type.
   132  //
   133  type targets struct {
   134  	tail         *targets // rest of stack
   135  	_break       *BasicBlock
   136  	_continue    *BasicBlock
   137  	_fallthrough *BasicBlock
   138  }
   139  
   140  // Destinations associated with a labelled block.
   141  // We populate these as labels are encountered in forward gotos or
   142  // labelled statements.
   143  //
   144  type lblock struct {
   145  	_goto     *BasicBlock
   146  	_break    *BasicBlock
   147  	_continue *BasicBlock
   148  }
   149  
   150  // labelledBlock returns the branch target associated with the
   151  // specified label, creating it if needed.
   152  //
   153  func (f *Function) labelledBlock(label *ast.Ident) *lblock {
   154  	lb := f.lblocks[label.Obj]
   155  	if lb == nil {
   156  		lb = &lblock{_goto: f.newBasicBlock(label.Name)}
   157  		if f.lblocks == nil {
   158  			f.lblocks = make(map[*ast.Object]*lblock)
   159  		}
   160  		f.lblocks[label.Obj] = lb
   161  	}
   162  	return lb
   163  }
   164  
   165  // addParam adds a (non-escaping) parameter to f.Params of the
   166  // specified name, type and source position.
   167  //
   168  func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter {
   169  	v := &Parameter{
   170  		name:   name,
   171  		typ:    typ,
   172  		pos:    pos,
   173  		parent: f,
   174  	}
   175  	f.Params = append(f.Params, v)
   176  	return v
   177  }
   178  
   179  func (f *Function) addParamObj(obj types.Object) *Parameter {
   180  	name := obj.Name()
   181  	if name == "" {
   182  		name = fmt.Sprintf("arg%d", len(f.Params))
   183  	}
   184  	param := f.addParam(name, obj.Type(), obj.Pos())
   185  	param.object = obj
   186  	return param
   187  }
   188  
   189  // addSpilledParam declares a parameter that is pre-spilled to the
   190  // stack; the function body will load/store the spilled location.
   191  // Subsequent lifting will eliminate spills where possible.
   192  //
   193  func (f *Function) addSpilledParam(obj types.Object) {
   194  	param := f.addParamObj(obj)
   195  	spill := &Alloc{Comment: obj.Name()}
   196  	spill.setType(types.NewPointer(obj.Type()))
   197  	spill.setPos(obj.Pos())
   198  	f.objects[obj] = spill
   199  	f.Locals = append(f.Locals, spill)
   200  	f.emit(spill)
   201  	f.emit(&Store{Addr: spill, Val: param})
   202  }
   203  
   204  // startBody initializes the function prior to generating SSA code for its body.
   205  // Precondition: f.Type() already set.
   206  //
   207  func (f *Function) startBody() {
   208  	f.currentBlock = f.newBasicBlock("entry")
   209  	f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
   210  }
   211  
   212  // createSyntacticParams populates f.Params and generates code (spills
   213  // and named result locals) for all the parameters declared in the
   214  // syntax.  In addition it populates the f.objects mapping.
   215  //
   216  // Preconditions:
   217  // f.startBody() was called.
   218  // Postcondition:
   219  // len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
   220  //
   221  func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
   222  	// Receiver (at most one inner iteration).
   223  	if recv != nil {
   224  		for _, field := range recv.List {
   225  			for _, n := range field.Names {
   226  				f.addSpilledParam(f.Pkg.info.Defs[n])
   227  			}
   228  			// Anonymous receiver?  No need to spill.
   229  			if field.Names == nil {
   230  				f.addParamObj(f.Signature.Recv())
   231  			}
   232  		}
   233  	}
   234  
   235  	// Parameters.
   236  	if functype.Params != nil {
   237  		n := len(f.Params) // 1 if has recv, 0 otherwise
   238  		for _, field := range functype.Params.List {
   239  			for _, n := range field.Names {
   240  				f.addSpilledParam(f.Pkg.info.Defs[n])
   241  			}
   242  			// Anonymous parameter?  No need to spill.
   243  			if field.Names == nil {
   244  				f.addParamObj(f.Signature.Params().At(len(f.Params) - n))
   245  			}
   246  		}
   247  	}
   248  
   249  	// Named results.
   250  	if functype.Results != nil {
   251  		for _, field := range functype.Results.List {
   252  			// Implicit "var" decl of locals for named results.
   253  			for _, n := range field.Names {
   254  				f.namedResults = append(f.namedResults, f.addLocalForIdent(n))
   255  			}
   256  		}
   257  	}
   258  }
   259  
   260  // numberRegisters assigns numbers to all SSA registers
   261  // (value-defining Instructions) in f, to aid debugging.
   262  // (Non-Instruction Values are named at construction.)
   263  //
   264  func numberRegisters(f *Function) {
   265  	v := 0
   266  	for _, b := range f.Blocks {
   267  		for _, instr := range b.Instrs {
   268  			switch instr.(type) {
   269  			case Value:
   270  				instr.(interface {
   271  					setNum(int)
   272  				}).setNum(v)
   273  				v++
   274  			}
   275  		}
   276  	}
   277  }
   278  
   279  // buildReferrers populates the def/use information in all non-nil
   280  // Value.Referrers slice.
   281  // Precondition: all such slices are initially empty.
   282  func buildReferrers(f *Function) {
   283  	var rands []*Value
   284  	for _, b := range f.Blocks {
   285  		for _, instr := range b.Instrs {
   286  			rands = instr.Operands(rands[:0]) // recycle storage
   287  			for _, rand := range rands {
   288  				if r := *rand; r != nil {
   289  					if ref := r.Referrers(); ref != nil {
   290  						*ref = append(*ref, instr)
   291  					}
   292  				}
   293  			}
   294  		}
   295  	}
   296  }
   297  
   298  // finishBody() finalizes the function after SSA code generation of its body.
   299  func (f *Function) finishBody() {
   300  	f.objects = nil
   301  	f.currentBlock = nil
   302  	f.lblocks = nil
   303  
   304  	// Don't pin the AST in memory (except in debug mode).
   305  	if n := f.syntax; n != nil && !f.debugInfo() {
   306  		f.syntax = extentNode{n.Pos(), n.End()}
   307  	}
   308  
   309  	// Remove from f.Locals any Allocs that escape to the heap.
   310  	j := 0
   311  	for _, l := range f.Locals {
   312  		if !l.Heap {
   313  			f.Locals[j] = l
   314  			j++
   315  		}
   316  	}
   317  	// Nil out f.Locals[j:] to aid GC.
   318  	for i := j; i < len(f.Locals); i++ {
   319  		f.Locals[i] = nil
   320  	}
   321  	f.Locals = f.Locals[:j]
   322  
   323  	optimizeBlocks(f)
   324  
   325  	buildReferrers(f)
   326  
   327  	buildDomTree(f)
   328  
   329  	if f.Prog.mode&NaiveForm == 0 {
   330  		// For debugging pre-state of lifting pass:
   331  		// numberRegisters(f)
   332  		// f.WriteTo(os.Stderr)
   333  		lift(f)
   334  	}
   335  
   336  	f.namedResults = nil // (used by lifting)
   337  
   338  	numberRegisters(f)
   339  
   340  	if f.Prog.mode&PrintFunctions != 0 {
   341  		printMu.Lock()
   342  		f.WriteTo(os.Stdout)
   343  		printMu.Unlock()
   344  	}
   345  
   346  	if f.Prog.mode&SanityCheckFunctions != 0 {
   347  		mustSanityCheck(f, nil)
   348  	}
   349  }
   350  
   351  // removeNilBlocks eliminates nils from f.Blocks and updates each
   352  // BasicBlock.Index.  Use this after any pass that may delete blocks.
   353  //
   354  func (f *Function) removeNilBlocks() {
   355  	j := 0
   356  	for _, b := range f.Blocks {
   357  		if b != nil {
   358  			b.Index = j
   359  			f.Blocks[j] = b
   360  			j++
   361  		}
   362  	}
   363  	// Nil out f.Blocks[j:] to aid GC.
   364  	for i := j; i < len(f.Blocks); i++ {
   365  		f.Blocks[i] = nil
   366  	}
   367  	f.Blocks = f.Blocks[:j]
   368  }
   369  
   370  // SetDebugMode sets the debug mode for package pkg.  If true, all its
   371  // functions will include full debug info.  This greatly increases the
   372  // size of the instruction stream, and causes Functions to depend upon
   373  // the ASTs, potentially keeping them live in memory for longer.
   374  //
   375  func (pkg *Package) SetDebugMode(debug bool) {
   376  	// TODO(adonovan): do we want ast.File granularity?
   377  	pkg.debug = debug
   378  }
   379  
   380  // debugInfo reports whether debug info is wanted for this function.
   381  func (f *Function) debugInfo() bool {
   382  	return f.Pkg != nil && f.Pkg.debug
   383  }
   384  
   385  // addNamedLocal creates a local variable, adds it to function f and
   386  // returns it.  Its name and type are taken from obj.  Subsequent
   387  // calls to f.lookup(obj) will return the same local.
   388  //
   389  func (f *Function) addNamedLocal(obj types.Object) *Alloc {
   390  	l := f.addLocal(obj.Type(), obj.Pos())
   391  	l.Comment = obj.Name()
   392  	f.objects[obj] = l
   393  	return l
   394  }
   395  
   396  func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc {
   397  	return f.addNamedLocal(f.Pkg.info.Defs[id])
   398  }
   399  
   400  // addLocal creates an anonymous local variable of type typ, adds it
   401  // to function f and returns it.  pos is the optional source location.
   402  //
   403  func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc {
   404  	v := &Alloc{}
   405  	v.setType(types.NewPointer(typ))
   406  	v.setPos(pos)
   407  	f.Locals = append(f.Locals, v)
   408  	f.emit(v)
   409  	return v
   410  }
   411  
   412  // lookup returns the address of the named variable identified by obj
   413  // that is local to function f or one of its enclosing functions.
   414  // If escaping, the reference comes from a potentially escaping pointer
   415  // expression and the referent must be heap-allocated.
   416  //
   417  func (f *Function) lookup(obj types.Object, escaping bool) Value {
   418  	if v, ok := f.objects[obj]; ok {
   419  		if alloc, ok := v.(*Alloc); ok && escaping {
   420  			alloc.Heap = true
   421  		}
   422  		return v // function-local var (address)
   423  	}
   424  
   425  	// Definition must be in an enclosing function;
   426  	// plumb it through intervening closures.
   427  	if f.parent == nil {
   428  		panic("no ssa.Value for " + obj.String())
   429  	}
   430  	outer := f.parent.lookup(obj, true) // escaping
   431  	v := &FreeVar{
   432  		name:   obj.Name(),
   433  		typ:    outer.Type(),
   434  		pos:    outer.Pos(),
   435  		outer:  outer,
   436  		parent: f,
   437  	}
   438  	f.objects[obj] = v
   439  	f.FreeVars = append(f.FreeVars, v)
   440  	return v
   441  }
   442  
   443  // emit emits the specified instruction to function f.
   444  func (f *Function) emit(instr Instruction) Value {
   445  	return f.currentBlock.emit(instr)
   446  }
   447  
   448  // RelString returns the full name of this function, qualified by
   449  // package name, receiver type, etc.
   450  //
   451  // The specific formatting rules are not guaranteed and may change.
   452  //
   453  // Examples:
   454  //      "math.IsNaN"                  // a package-level function
   455  //      "(*bytes.Buffer).Bytes"       // a declared method or a wrapper
   456  //      "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
   457  //      "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
   458  //      "main.main$1"                 // an anonymous function in main
   459  //      "main.init#1"                 // a declared init function
   460  //      "main.init"                   // the synthesized package initializer
   461  //
   462  // When these functions are referred to from within the same package
   463  // (i.e. from == f.Pkg.Object), they are rendered without the package path.
   464  // For example: "IsNaN", "(*Buffer).Bytes", etc.
   465  //
   466  // All non-synthetic functions have distinct package-qualified names.
   467  // (But two methods may have the same name "(T).f" if one is a synthetic
   468  // wrapper promoting a non-exported method "f" from another package; in
   469  // that case, the strings are equal but the identifiers "f" are distinct.)
   470  //
   471  func (f *Function) RelString(from *types.Package) string {
   472  	// Anonymous?
   473  	if f.parent != nil {
   474  		// An anonymous function's Name() looks like "parentName$1",
   475  		// but its String() should include the type/package/etc.
   476  		parent := f.parent.RelString(from)
   477  		for i, anon := range f.parent.AnonFuncs {
   478  			if anon == f {
   479  				return fmt.Sprintf("%s$%d", parent, 1+i)
   480  			}
   481  		}
   482  
   483  		return f.name // should never happen
   484  	}
   485  
   486  	// Method (declared or wrapper)?
   487  	if recv := f.Signature.Recv(); recv != nil {
   488  		return f.relMethod(from, recv.Type())
   489  	}
   490  
   491  	// Thunk?
   492  	if f.method != nil {
   493  		return f.relMethod(from, f.method.Recv())
   494  	}
   495  
   496  	// Bound?
   497  	if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
   498  		return f.relMethod(from, f.FreeVars[0].Type())
   499  	}
   500  
   501  	// Package-level function?
   502  	// Prefix with package name for cross-package references only.
   503  	if p := f.pkg(); p != nil && p != from {
   504  		return fmt.Sprintf("%s.%s", p.Path(), f.name)
   505  	}
   506  
   507  	// Unknown.
   508  	return f.name
   509  }
   510  
   511  func (f *Function) relMethod(from *types.Package, recv types.Type) string {
   512  	return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
   513  }
   514  
   515  // writeSignature writes to buf the signature sig in declaration syntax.
   516  func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) {
   517  	buf.WriteString("func ")
   518  	if recv := sig.Recv(); recv != nil {
   519  		buf.WriteString("(")
   520  		if n := params[0].Name(); n != "" {
   521  			buf.WriteString(n)
   522  			buf.WriteString(" ")
   523  		}
   524  		types.WriteType(buf, params[0].Type(), types.RelativeTo(from))
   525  		buf.WriteString(") ")
   526  	}
   527  	buf.WriteString(name)
   528  	types.WriteSignature(buf, sig, types.RelativeTo(from))
   529  }
   530  
   531  func (f *Function) pkg() *types.Package {
   532  	if f.Pkg != nil {
   533  		return f.Pkg.Pkg
   534  	}
   535  	return nil
   536  }
   537  
   538  var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer
   539  
   540  func (f *Function) WriteTo(w io.Writer) (int64, error) {
   541  	var buf bytes.Buffer
   542  	WriteFunction(&buf, f)
   543  	n, err := w.Write(buf.Bytes())
   544  	return int64(n), err
   545  }
   546  
   547  // WriteFunction writes to buf a human-readable "disassembly" of f.
   548  func WriteFunction(buf *bytes.Buffer, f *Function) {
   549  	fmt.Fprintf(buf, "# Name: %s\n", f.String())
   550  	if f.Pkg != nil {
   551  		fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path())
   552  	}
   553  	if syn := f.Synthetic; syn != "" {
   554  		fmt.Fprintln(buf, "# Synthetic:", syn)
   555  	}
   556  	if pos := f.Pos(); pos.IsValid() {
   557  		fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
   558  	}
   559  
   560  	if f.parent != nil {
   561  		fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
   562  	}
   563  
   564  	if f.Recover != nil {
   565  		fmt.Fprintf(buf, "# Recover: %s\n", f.Recover)
   566  	}
   567  
   568  	from := f.pkg()
   569  
   570  	if f.FreeVars != nil {
   571  		buf.WriteString("# Free variables:\n")
   572  		for i, fv := range f.FreeVars {
   573  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
   574  		}
   575  	}
   576  
   577  	if len(f.Locals) > 0 {
   578  		buf.WriteString("# Locals:\n")
   579  		for i, l := range f.Locals {
   580  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from))
   581  		}
   582  	}
   583  	writeSignature(buf, from, f.Name(), f.Signature, f.Params)
   584  	buf.WriteString(":\n")
   585  
   586  	if f.Blocks == nil {
   587  		buf.WriteString("\t(external)\n")
   588  	}
   589  
   590  	// NB. column calculations are confused by non-ASCII
   591  	// characters and assume 8-space tabs.
   592  	const punchcard = 80 // for old time's sake.
   593  	const tabwidth = 8
   594  	for _, b := range f.Blocks {
   595  		if b == nil {
   596  			// Corrupt CFG.
   597  			fmt.Fprintf(buf, ".nil:\n")
   598  			continue
   599  		}
   600  		n, _ := fmt.Fprintf(buf, "%d:", b.Index)
   601  		bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs))
   602  		fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg)
   603  
   604  		if false { // CFG debugging
   605  			fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
   606  		}
   607  		for _, instr := range b.Instrs {
   608  			buf.WriteString("\t")
   609  			switch v := instr.(type) {
   610  			case Value:
   611  				l := punchcard - tabwidth
   612  				// Left-align the instruction.
   613  				if name := v.Name(); name != "" {
   614  					n, _ := fmt.Fprintf(buf, "%s = ", name)
   615  					l -= n
   616  				}
   617  				n, _ := buf.WriteString(instr.String())
   618  				l -= n
   619  				// Right-align the type if there's space.
   620  				if t := v.Type(); t != nil {
   621  					buf.WriteByte(' ')
   622  					ts := relType(t, from)
   623  					l -= len(ts) + len("  ") // (spaces before and after type)
   624  					if l > 0 {
   625  						fmt.Fprintf(buf, "%*s", l, "")
   626  					}
   627  					buf.WriteString(ts)
   628  				}
   629  			case nil:
   630  				// Be robust against bad transforms.
   631  				buf.WriteString("<deleted>")
   632  			default:
   633  				buf.WriteString(instr.String())
   634  			}
   635  			buf.WriteString("\n")
   636  		}
   637  	}
   638  	fmt.Fprintf(buf, "\n")
   639  }
   640  
   641  // newBasicBlock adds to f a new basic block and returns it.  It does
   642  // not automatically become the current block for subsequent calls to emit.
   643  // comment is an optional string for more readable debugging output.
   644  //
   645  func (f *Function) newBasicBlock(comment string) *BasicBlock {
   646  	b := &BasicBlock{
   647  		Index:   len(f.Blocks),
   648  		Comment: comment,
   649  		parent:  f,
   650  	}
   651  	b.Succs = b.succs2[:0]
   652  	f.Blocks = append(f.Blocks, b)
   653  	return b
   654  }
   655  
   656  // NewFunction returns a new synthetic Function instance belonging to
   657  // prog, with its name and signature fields set as specified.
   658  //
   659  // The caller is responsible for initializing the remaining fields of
   660  // the function object, e.g. Pkg, Params, Blocks.
   661  //
   662  // It is practically impossible for clients to construct well-formed
   663  // SSA functions/packages/programs directly, so we assume this is the
   664  // job of the Builder alone.  NewFunction exists to provide clients a
   665  // little flexibility.  For example, analysis tools may wish to
   666  // construct fake Functions for the root of the callgraph, a fake
   667  // "reflect" package, etc.
   668  //
   669  // TODO(adonovan): think harder about the API here.
   670  //
   671  func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
   672  	return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
   673  }
   674  
   675  type extentNode [2]token.Pos
   676  
   677  func (n extentNode) Pos() token.Pos { return n[0] }
   678  func (n extentNode) End() token.Pos { return n[1] }
   679  
   680  // Syntax returns an ast.Node whose Pos/End methods provide the
   681  // lexical extent of the function if it was defined by Go source code
   682  // (f.Synthetic==""), or nil otherwise.
   683  //
   684  // If f was built with debug information (see Package.SetDebugRef),
   685  // the result is the *ast.FuncDecl or *ast.FuncLit that declared the
   686  // function.  Otherwise, it is an opaque Node providing only position
   687  // information; this avoids pinning the AST in memory.
   688  //
   689  func (f *Function) Syntax() ast.Node { return f.syntax }