gopkg.in/alecthomas/gometalinter.v3@v3.0.0/_linters/src/golang.org/x/tools/go/ssa/lift.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This file defines the lifting pass which tries to "lift" Alloc
     8  // cells (new/local variables) into SSA registers, replacing loads
     9  // with the dominating stored value, eliminating loads and stores, and
    10  // inserting φ-nodes as needed.
    11  
    12  // Cited papers and resources:
    13  //
    14  // Ron Cytron et al. 1991. Efficiently computing SSA form...
    15  // http://doi.acm.org/10.1145/115372.115320
    16  //
    17  // Cooper, Harvey, Kennedy.  2001.  A Simple, Fast Dominance Algorithm.
    18  // Software Practice and Experience 2001, 4:1-10.
    19  // http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
    20  //
    21  // Daniel Berlin, llvmdev mailing list, 2012.
    22  // http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-January/046638.html
    23  // (Be sure to expand the whole thread.)
    24  
    25  // TODO(adonovan): opt: there are many optimizations worth evaluating, and
    26  // the conventional wisdom for SSA construction is that a simple
    27  // algorithm well engineered often beats those of better asymptotic
    28  // complexity on all but the most egregious inputs.
    29  //
    30  // Danny Berlin suggests that the Cooper et al. algorithm for
    31  // computing the dominance frontier is superior to Cytron et al.
    32  // Furthermore he recommends that rather than computing the DF for the
    33  // whole function then renaming all alloc cells, it may be cheaper to
    34  // compute the DF for each alloc cell separately and throw it away.
    35  //
    36  // Consider exploiting liveness information to avoid creating dead
    37  // φ-nodes which we then immediately remove.
    38  //
    39  // Also see many other "TODO: opt" suggestions in the code.
    40  
    41  import (
    42  	"fmt"
    43  	"go/token"
    44  	"go/types"
    45  	"math/big"
    46  	"os"
    47  )
    48  
    49  // If true, show diagnostic information at each step of lifting.
    50  // Very verbose.
    51  const debugLifting = false
    52  
    53  // domFrontier maps each block to the set of blocks in its dominance
    54  // frontier.  The outer slice is conceptually a map keyed by
    55  // Block.Index.  The inner slice is conceptually a set, possibly
    56  // containing duplicates.
    57  //
    58  // TODO(adonovan): opt: measure impact of dups; consider a packed bit
    59  // representation, e.g. big.Int, and bitwise parallel operations for
    60  // the union step in the Children loop.
    61  //
    62  // domFrontier's methods mutate the slice's elements but not its
    63  // length, so their receivers needn't be pointers.
    64  //
    65  type domFrontier [][]*BasicBlock
    66  
    67  func (df domFrontier) add(u, v *BasicBlock) {
    68  	p := &df[u.Index]
    69  	*p = append(*p, v)
    70  }
    71  
    72  // build builds the dominance frontier df for the dominator (sub)tree
    73  // rooted at u, using the Cytron et al. algorithm.
    74  //
    75  // TODO(adonovan): opt: consider Berlin approach, computing pruned SSA
    76  // by pruning the entire IDF computation, rather than merely pruning
    77  // the DF -> IDF step.
    78  func (df domFrontier) build(u *BasicBlock) {
    79  	// Encounter each node u in postorder of dom tree.
    80  	for _, child := range u.dom.children {
    81  		df.build(child)
    82  	}
    83  	for _, vb := range u.Succs {
    84  		if v := vb.dom; v.idom != u {
    85  			df.add(u, vb)
    86  		}
    87  	}
    88  	for _, w := range u.dom.children {
    89  		for _, vb := range df[w.Index] {
    90  			// TODO(adonovan): opt: use word-parallel bitwise union.
    91  			if v := vb.dom; v.idom != u {
    92  				df.add(u, vb)
    93  			}
    94  		}
    95  	}
    96  }
    97  
    98  func buildDomFrontier(fn *Function) domFrontier {
    99  	df := make(domFrontier, len(fn.Blocks))
   100  	df.build(fn.Blocks[0])
   101  	if fn.Recover != nil {
   102  		df.build(fn.Recover)
   103  	}
   104  	return df
   105  }
   106  
   107  func removeInstr(refs []Instruction, instr Instruction) []Instruction {
   108  	i := 0
   109  	for _, ref := range refs {
   110  		if ref == instr {
   111  			continue
   112  		}
   113  		refs[i] = ref
   114  		i++
   115  	}
   116  	for j := i; j != len(refs); j++ {
   117  		refs[j] = nil // aid GC
   118  	}
   119  	return refs[:i]
   120  }
   121  
   122  // lift replaces local and new Allocs accessed only with
   123  // load/store by SSA registers, inserting φ-nodes where necessary.
   124  // The result is a program in classical pruned SSA form.
   125  //
   126  // Preconditions:
   127  // - fn has no dead blocks (blockopt has run).
   128  // - Def/use info (Operands and Referrers) is up-to-date.
   129  // - The dominator tree is up-to-date.
   130  //
   131  func lift(fn *Function) {
   132  	// TODO(adonovan): opt: lots of little optimizations may be
   133  	// worthwhile here, especially if they cause us to avoid
   134  	// buildDomFrontier.  For example:
   135  	//
   136  	// - Alloc never loaded?  Eliminate.
   137  	// - Alloc never stored?  Replace all loads with a zero constant.
   138  	// - Alloc stored once?  Replace loads with dominating store;
   139  	//   don't forget that an Alloc is itself an effective store
   140  	//   of zero.
   141  	// - Alloc used only within a single block?
   142  	//   Use degenerate algorithm avoiding φ-nodes.
   143  	// - Consider synergy with scalar replacement of aggregates (SRA).
   144  	//   e.g. *(&x.f) where x is an Alloc.
   145  	//   Perhaps we'd get better results if we generated this as x.f
   146  	//   i.e. Field(x, .f) instead of Load(FieldIndex(x, .f)).
   147  	//   Unclear.
   148  	//
   149  	// But we will start with the simplest correct code.
   150  	df := buildDomFrontier(fn)
   151  
   152  	if debugLifting {
   153  		title := false
   154  		for i, blocks := range df {
   155  			if blocks != nil {
   156  				if !title {
   157  					fmt.Fprintf(os.Stderr, "Dominance frontier of %s:\n", fn)
   158  					title = true
   159  				}
   160  				fmt.Fprintf(os.Stderr, "\t%s: %s\n", fn.Blocks[i], blocks)
   161  			}
   162  		}
   163  	}
   164  
   165  	newPhis := make(newPhiMap)
   166  
   167  	// During this pass we will replace some BasicBlock.Instrs
   168  	// (allocs, loads and stores) with nil, keeping a count in
   169  	// BasicBlock.gaps.  At the end we will reset Instrs to the
   170  	// concatenation of all non-dead newPhis and non-nil Instrs
   171  	// for the block, reusing the original array if space permits.
   172  
   173  	// While we're here, we also eliminate 'rundefers'
   174  	// instructions in functions that contain no 'defer'
   175  	// instructions.
   176  	usesDefer := false
   177  
   178  	// A counter used to generate ~unique ids for Phi nodes, as an
   179  	// aid to debugging.  We use large numbers to make them highly
   180  	// visible.  All nodes are renumbered later.
   181  	fresh := 1000
   182  
   183  	// Determine which allocs we can lift and number them densely.
   184  	// The renaming phase uses this numbering for compact maps.
   185  	numAllocs := 0
   186  	for _, b := range fn.Blocks {
   187  		b.gaps = 0
   188  		b.rundefers = 0
   189  		for _, instr := range b.Instrs {
   190  			switch instr := instr.(type) {
   191  			case *Alloc:
   192  				index := -1
   193  				if liftAlloc(df, instr, newPhis, &fresh) {
   194  					index = numAllocs
   195  					numAllocs++
   196  				}
   197  				instr.index = index
   198  			case *Defer:
   199  				usesDefer = true
   200  			case *RunDefers:
   201  				b.rundefers++
   202  			}
   203  		}
   204  	}
   205  
   206  	// renaming maps an alloc (keyed by index) to its replacement
   207  	// value.  Initially the renaming contains nil, signifying the
   208  	// zero constant of the appropriate type; we construct the
   209  	// Const lazily at most once on each path through the domtree.
   210  	// TODO(adonovan): opt: cache per-function not per subtree.
   211  	renaming := make([]Value, numAllocs)
   212  
   213  	// Renaming.
   214  	rename(fn.Blocks[0], renaming, newPhis)
   215  
   216  	// Eliminate dead φ-nodes.
   217  	removeDeadPhis(fn.Blocks, newPhis)
   218  
   219  	// Prepend remaining live φ-nodes to each block.
   220  	for _, b := range fn.Blocks {
   221  		nps := newPhis[b]
   222  		j := len(nps)
   223  
   224  		rundefersToKill := b.rundefers
   225  		if usesDefer {
   226  			rundefersToKill = 0
   227  		}
   228  
   229  		if j+b.gaps+rundefersToKill == 0 {
   230  			continue // fast path: no new phis or gaps
   231  		}
   232  
   233  		// Compact nps + non-nil Instrs into a new slice.
   234  		// TODO(adonovan): opt: compact in situ (rightwards)
   235  		// if Instrs has sufficient space or slack.
   236  		dst := make([]Instruction, len(b.Instrs)+j-b.gaps-rundefersToKill)
   237  		for i, np := range nps {
   238  			dst[i] = np.phi
   239  		}
   240  		for _, instr := range b.Instrs {
   241  			if instr == nil {
   242  				continue
   243  			}
   244  			if !usesDefer {
   245  				if _, ok := instr.(*RunDefers); ok {
   246  					continue
   247  				}
   248  			}
   249  			dst[j] = instr
   250  			j++
   251  		}
   252  		b.Instrs = dst
   253  	}
   254  
   255  	// Remove any fn.Locals that were lifted.
   256  	j := 0
   257  	for _, l := range fn.Locals {
   258  		if l.index < 0 {
   259  			fn.Locals[j] = l
   260  			j++
   261  		}
   262  	}
   263  	// Nil out fn.Locals[j:] to aid GC.
   264  	for i := j; i < len(fn.Locals); i++ {
   265  		fn.Locals[i] = nil
   266  	}
   267  	fn.Locals = fn.Locals[:j]
   268  }
   269  
   270  // removeDeadPhis removes φ-nodes not transitively needed by a
   271  // non-Phi, non-DebugRef instruction.
   272  func removeDeadPhis(blocks []*BasicBlock, newPhis newPhiMap) {
   273  	// First pass: find the set of "live" φ-nodes: those reachable
   274  	// from some non-Phi instruction.
   275  	//
   276  	// We compute reachability in reverse, starting from each φ,
   277  	// rather than forwards, starting from each live non-Phi
   278  	// instruction, because this way visits much less of the
   279  	// Value graph.
   280  	livePhis := make(map[*Phi]bool)
   281  	for _, npList := range newPhis {
   282  		for _, np := range npList {
   283  			phi := np.phi
   284  			if !livePhis[phi] && phiHasDirectReferrer(phi) {
   285  				markLivePhi(livePhis, phi)
   286  			}
   287  		}
   288  	}
   289  
   290  	// Existing φ-nodes due to && and || operators
   291  	// are all considered live (see Go issue 19622).
   292  	for _, b := range blocks {
   293  		for _, phi := range b.phis() {
   294  			markLivePhi(livePhis, phi.(*Phi))
   295  		}
   296  	}
   297  
   298  	// Second pass: eliminate unused phis from newPhis.
   299  	for block, npList := range newPhis {
   300  		j := 0
   301  		for _, np := range npList {
   302  			if livePhis[np.phi] {
   303  				npList[j] = np
   304  				j++
   305  			} else {
   306  				// discard it, first removing it from referrers
   307  				for _, val := range np.phi.Edges {
   308  					if refs := val.Referrers(); refs != nil {
   309  						*refs = removeInstr(*refs, np.phi)
   310  					}
   311  				}
   312  				np.phi.block = nil
   313  			}
   314  		}
   315  		newPhis[block] = npList[:j]
   316  	}
   317  }
   318  
   319  // markLivePhi marks phi, and all φ-nodes transitively reachable via
   320  // its Operands, live.
   321  func markLivePhi(livePhis map[*Phi]bool, phi *Phi) {
   322  	livePhis[phi] = true
   323  	for _, rand := range phi.Operands(nil) {
   324  		if q, ok := (*rand).(*Phi); ok {
   325  			if !livePhis[q] {
   326  				markLivePhi(livePhis, q)
   327  			}
   328  		}
   329  	}
   330  }
   331  
   332  // phiHasDirectReferrer reports whether phi is directly referred to by
   333  // a non-Phi instruction.  Such instructions are the
   334  // roots of the liveness traversal.
   335  func phiHasDirectReferrer(phi *Phi) bool {
   336  	for _, instr := range *phi.Referrers() {
   337  		if _, ok := instr.(*Phi); !ok {
   338  			return true
   339  		}
   340  	}
   341  	return false
   342  }
   343  
   344  type blockSet struct{ big.Int } // (inherit methods from Int)
   345  
   346  // add adds b to the set and returns true if the set changed.
   347  func (s *blockSet) add(b *BasicBlock) bool {
   348  	i := b.Index
   349  	if s.Bit(i) != 0 {
   350  		return false
   351  	}
   352  	s.SetBit(&s.Int, i, 1)
   353  	return true
   354  }
   355  
   356  // take removes an arbitrary element from a set s and
   357  // returns its index, or returns -1 if empty.
   358  func (s *blockSet) take() int {
   359  	l := s.BitLen()
   360  	for i := 0; i < l; i++ {
   361  		if s.Bit(i) == 1 {
   362  			s.SetBit(&s.Int, i, 0)
   363  			return i
   364  		}
   365  	}
   366  	return -1
   367  }
   368  
   369  // newPhi is a pair of a newly introduced φ-node and the lifted Alloc
   370  // it replaces.
   371  type newPhi struct {
   372  	phi   *Phi
   373  	alloc *Alloc
   374  }
   375  
   376  // newPhiMap records for each basic block, the set of newPhis that
   377  // must be prepended to the block.
   378  type newPhiMap map[*BasicBlock][]newPhi
   379  
   380  // liftAlloc determines whether alloc can be lifted into registers,
   381  // and if so, it populates newPhis with all the φ-nodes it may require
   382  // and returns true.
   383  //
   384  // fresh is a source of fresh ids for phi nodes.
   385  //
   386  func liftAlloc(df domFrontier, alloc *Alloc, newPhis newPhiMap, fresh *int) bool {
   387  	// Don't lift aggregates into registers, because we don't have
   388  	// a way to express their zero-constants.
   389  	switch deref(alloc.Type()).Underlying().(type) {
   390  	case *types.Array, *types.Struct:
   391  		return false
   392  	}
   393  
   394  	// Don't lift named return values in functions that defer
   395  	// calls that may recover from panic.
   396  	if fn := alloc.Parent(); fn.Recover != nil {
   397  		for _, nr := range fn.namedResults {
   398  			if nr == alloc {
   399  				return false
   400  			}
   401  		}
   402  	}
   403  
   404  	// Compute defblocks, the set of blocks containing a
   405  	// definition of the alloc cell.
   406  	var defblocks blockSet
   407  	for _, instr := range *alloc.Referrers() {
   408  		// Bail out if we discover the alloc is not liftable;
   409  		// the only operations permitted to use the alloc are
   410  		// loads/stores into the cell, and DebugRef.
   411  		switch instr := instr.(type) {
   412  		case *Store:
   413  			if instr.Val == alloc {
   414  				return false // address used as value
   415  			}
   416  			if instr.Addr != alloc {
   417  				panic("Alloc.Referrers is inconsistent")
   418  			}
   419  			defblocks.add(instr.Block())
   420  		case *UnOp:
   421  			if instr.Op != token.MUL {
   422  				return false // not a load
   423  			}
   424  			if instr.X != alloc {
   425  				panic("Alloc.Referrers is inconsistent")
   426  			}
   427  		case *DebugRef:
   428  			// ok
   429  		default:
   430  			return false // some other instruction
   431  		}
   432  	}
   433  	// The Alloc itself counts as a (zero) definition of the cell.
   434  	defblocks.add(alloc.Block())
   435  
   436  	if debugLifting {
   437  		fmt.Fprintln(os.Stderr, "\tlifting ", alloc, alloc.Name())
   438  	}
   439  
   440  	fn := alloc.Parent()
   441  
   442  	// Φ-insertion.
   443  	//
   444  	// What follows is the body of the main loop of the insert-φ
   445  	// function described by Cytron et al, but instead of using
   446  	// counter tricks, we just reset the 'hasAlready' and 'work'
   447  	// sets each iteration.  These are bitmaps so it's pretty cheap.
   448  	//
   449  	// TODO(adonovan): opt: recycle slice storage for W,
   450  	// hasAlready, defBlocks across liftAlloc calls.
   451  	var hasAlready blockSet
   452  
   453  	// Initialize W and work to defblocks.
   454  	var work blockSet = defblocks // blocks seen
   455  	var W blockSet                // blocks to do
   456  	W.Set(&defblocks.Int)
   457  
   458  	// Traverse iterated dominance frontier, inserting φ-nodes.
   459  	for i := W.take(); i != -1; i = W.take() {
   460  		u := fn.Blocks[i]
   461  		for _, v := range df[u.Index] {
   462  			if hasAlready.add(v) {
   463  				// Create φ-node.
   464  				// It will be prepended to v.Instrs later, if needed.
   465  				phi := &Phi{
   466  					Edges:   make([]Value, len(v.Preds)),
   467  					Comment: alloc.Comment,
   468  				}
   469  				// This is merely a debugging aid:
   470  				phi.setNum(*fresh)
   471  				*fresh++
   472  
   473  				phi.pos = alloc.Pos()
   474  				phi.setType(deref(alloc.Type()))
   475  				phi.block = v
   476  				if debugLifting {
   477  					fmt.Fprintf(os.Stderr, "\tplace %s = %s at block %s\n", phi.Name(), phi, v)
   478  				}
   479  				newPhis[v] = append(newPhis[v], newPhi{phi, alloc})
   480  
   481  				if work.add(v) {
   482  					W.add(v)
   483  				}
   484  			}
   485  		}
   486  	}
   487  
   488  	return true
   489  }
   490  
   491  // replaceAll replaces all intraprocedural uses of x with y,
   492  // updating x.Referrers and y.Referrers.
   493  // Precondition: x.Referrers() != nil, i.e. x must be local to some function.
   494  //
   495  func replaceAll(x, y Value) {
   496  	var rands []*Value
   497  	pxrefs := x.Referrers()
   498  	pyrefs := y.Referrers()
   499  	for _, instr := range *pxrefs {
   500  		rands = instr.Operands(rands[:0]) // recycle storage
   501  		for _, rand := range rands {
   502  			if *rand != nil {
   503  				if *rand == x {
   504  					*rand = y
   505  				}
   506  			}
   507  		}
   508  		if pyrefs != nil {
   509  			*pyrefs = append(*pyrefs, instr) // dups ok
   510  		}
   511  	}
   512  	*pxrefs = nil // x is now unreferenced
   513  }
   514  
   515  // renamed returns the value to which alloc is being renamed,
   516  // constructing it lazily if it's the implicit zero initialization.
   517  //
   518  func renamed(renaming []Value, alloc *Alloc) Value {
   519  	v := renaming[alloc.index]
   520  	if v == nil {
   521  		v = zeroConst(deref(alloc.Type()))
   522  		renaming[alloc.index] = v
   523  	}
   524  	return v
   525  }
   526  
   527  // rename implements the (Cytron et al) SSA renaming algorithm, a
   528  // preorder traversal of the dominator tree replacing all loads of
   529  // Alloc cells with the value stored to that cell by the dominating
   530  // store instruction.  For lifting, we need only consider loads,
   531  // stores and φ-nodes.
   532  //
   533  // renaming is a map from *Alloc (keyed by index number) to its
   534  // dominating stored value; newPhis[x] is the set of new φ-nodes to be
   535  // prepended to block x.
   536  //
   537  func rename(u *BasicBlock, renaming []Value, newPhis newPhiMap) {
   538  	// Each φ-node becomes the new name for its associated Alloc.
   539  	for _, np := range newPhis[u] {
   540  		phi := np.phi
   541  		alloc := np.alloc
   542  		renaming[alloc.index] = phi
   543  	}
   544  
   545  	// Rename loads and stores of allocs.
   546  	for i, instr := range u.Instrs {
   547  		switch instr := instr.(type) {
   548  		case *Alloc:
   549  			if instr.index >= 0 { // store of zero to Alloc cell
   550  				// Replace dominated loads by the zero value.
   551  				renaming[instr.index] = nil
   552  				if debugLifting {
   553  					fmt.Fprintf(os.Stderr, "\tkill alloc %s\n", instr)
   554  				}
   555  				// Delete the Alloc.
   556  				u.Instrs[i] = nil
   557  				u.gaps++
   558  			}
   559  
   560  		case *Store:
   561  			if alloc, ok := instr.Addr.(*Alloc); ok && alloc.index >= 0 { // store to Alloc cell
   562  				// Replace dominated loads by the stored value.
   563  				renaming[alloc.index] = instr.Val
   564  				if debugLifting {
   565  					fmt.Fprintf(os.Stderr, "\tkill store %s; new value: %s\n",
   566  						instr, instr.Val.Name())
   567  				}
   568  				// Remove the store from the referrer list of the stored value.
   569  				if refs := instr.Val.Referrers(); refs != nil {
   570  					*refs = removeInstr(*refs, instr)
   571  				}
   572  				// Delete the Store.
   573  				u.Instrs[i] = nil
   574  				u.gaps++
   575  			}
   576  
   577  		case *UnOp:
   578  			if instr.Op == token.MUL {
   579  				if alloc, ok := instr.X.(*Alloc); ok && alloc.index >= 0 { // load of Alloc cell
   580  					newval := renamed(renaming, alloc)
   581  					if debugLifting {
   582  						fmt.Fprintf(os.Stderr, "\tupdate load %s = %s with %s\n",
   583  							instr.Name(), instr, newval.Name())
   584  					}
   585  					// Replace all references to
   586  					// the loaded value by the
   587  					// dominating stored value.
   588  					replaceAll(instr, newval)
   589  					// Delete the Load.
   590  					u.Instrs[i] = nil
   591  					u.gaps++
   592  				}
   593  			}
   594  
   595  		case *DebugRef:
   596  			if alloc, ok := instr.X.(*Alloc); ok && alloc.index >= 0 { // ref of Alloc cell
   597  				if instr.IsAddr {
   598  					instr.X = renamed(renaming, alloc)
   599  					instr.IsAddr = false
   600  
   601  					// Add DebugRef to instr.X's referrers.
   602  					if refs := instr.X.Referrers(); refs != nil {
   603  						*refs = append(*refs, instr)
   604  					}
   605  				} else {
   606  					// A source expression denotes the address
   607  					// of an Alloc that was optimized away.
   608  					instr.X = nil
   609  
   610  					// Delete the DebugRef.
   611  					u.Instrs[i] = nil
   612  					u.gaps++
   613  				}
   614  			}
   615  		}
   616  	}
   617  
   618  	// For each φ-node in a CFG successor, rename the edge.
   619  	for _, v := range u.Succs {
   620  		phis := newPhis[v]
   621  		if len(phis) == 0 {
   622  			continue
   623  		}
   624  		i := v.predIndex(u)
   625  		for _, np := range phis {
   626  			phi := np.phi
   627  			alloc := np.alloc
   628  			newval := renamed(renaming, alloc)
   629  			if debugLifting {
   630  				fmt.Fprintf(os.Stderr, "\tsetphi %s edge %s -> %s (#%d) (alloc=%s) := %s\n",
   631  					phi.Name(), u, v, i, alloc.Name(), newval.Name())
   632  			}
   633  			phi.Edges[i] = newval
   634  			if prefs := newval.Referrers(); prefs != nil {
   635  				*prefs = append(*prefs, phi)
   636  			}
   637  		}
   638  	}
   639  
   640  	// Continue depth-first recursion over domtree, pushing a
   641  	// fresh copy of the renaming map for each subtree.
   642  	for i, v := range u.dom.children {
   643  		r := renaming
   644  		if i < len(u.dom.children)-1 {
   645  			// On all but the final iteration, we must make
   646  			// a copy to avoid destructive update.
   647  			r = make([]Value, len(renaming))
   648  			copy(r, renaming)
   649  		}
   650  		rename(v, r, newPhis)
   651  	}
   652  
   653  }