gvisor.dev/gvisor@v0.0.0-20240520182842-f9d4d51c7e0f/pkg/tcpip/network/ipv4/icmp.go (about) 1 // Copyright 2021 The gVisor Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 package ipv4 16 17 import ( 18 "fmt" 19 20 "gvisor.dev/gvisor/pkg/buffer" 21 "gvisor.dev/gvisor/pkg/tcpip" 22 "gvisor.dev/gvisor/pkg/tcpip/checksum" 23 "gvisor.dev/gvisor/pkg/tcpip/header" 24 "gvisor.dev/gvisor/pkg/tcpip/header/parse" 25 "gvisor.dev/gvisor/pkg/tcpip/stack" 26 ) 27 28 // icmpv4DestinationUnreachableSockError is a general ICMPv4 Destination 29 // Unreachable error. 30 // 31 // +stateify savable 32 type icmpv4DestinationUnreachableSockError struct{} 33 34 // Origin implements tcpip.SockErrorCause. 35 func (*icmpv4DestinationUnreachableSockError) Origin() tcpip.SockErrOrigin { 36 return tcpip.SockExtErrorOriginICMP 37 } 38 39 // Type implements tcpip.SockErrorCause. 40 func (*icmpv4DestinationUnreachableSockError) Type() uint8 { 41 return uint8(header.ICMPv4DstUnreachable) 42 } 43 44 // Info implements tcpip.SockErrorCause. 45 func (*icmpv4DestinationUnreachableSockError) Info() uint32 { 46 return 0 47 } 48 49 var _ stack.TransportError = (*icmpv4DestinationHostUnreachableSockError)(nil) 50 51 // icmpv4DestinationHostUnreachableSockError is an ICMPv4 Destination Host 52 // Unreachable error. 53 // 54 // It indicates that a packet was not able to reach the destination host. 55 // 56 // +stateify savable 57 type icmpv4DestinationHostUnreachableSockError struct { 58 icmpv4DestinationUnreachableSockError 59 } 60 61 // Code implements tcpip.SockErrorCause. 62 func (*icmpv4DestinationHostUnreachableSockError) Code() uint8 { 63 return uint8(header.ICMPv4HostUnreachable) 64 } 65 66 // Kind implements stack.TransportError. 67 func (*icmpv4DestinationHostUnreachableSockError) Kind() stack.TransportErrorKind { 68 return stack.DestinationHostUnreachableTransportError 69 } 70 71 var _ stack.TransportError = (*icmpv4DestinationNetUnreachableSockError)(nil) 72 73 // icmpv4DestinationNetUnreachableSockError is an ICMPv4 Destination Net 74 // Unreachable error. 75 // 76 // It indicates that a packet was not able to reach the destination network. 77 // 78 // +stateify savable 79 type icmpv4DestinationNetUnreachableSockError struct { 80 icmpv4DestinationUnreachableSockError 81 } 82 83 // Code implements tcpip.SockErrorCause. 84 func (*icmpv4DestinationNetUnreachableSockError) Code() uint8 { 85 return uint8(header.ICMPv4NetUnreachable) 86 } 87 88 // Kind implements stack.TransportError. 89 func (*icmpv4DestinationNetUnreachableSockError) Kind() stack.TransportErrorKind { 90 return stack.DestinationNetworkUnreachableTransportError 91 } 92 93 var _ stack.TransportError = (*icmpv4DestinationPortUnreachableSockError)(nil) 94 95 // icmpv4DestinationPortUnreachableSockError is an ICMPv4 Destination Port 96 // Unreachable error. 97 // 98 // It indicates that a packet reached the destination host, but the transport 99 // protocol was not active on the destination port. 100 // 101 // +stateify savable 102 type icmpv4DestinationPortUnreachableSockError struct { 103 icmpv4DestinationUnreachableSockError 104 } 105 106 // Code implements tcpip.SockErrorCause. 107 func (*icmpv4DestinationPortUnreachableSockError) Code() uint8 { 108 return uint8(header.ICMPv4PortUnreachable) 109 } 110 111 // Kind implements stack.TransportError. 112 func (*icmpv4DestinationPortUnreachableSockError) Kind() stack.TransportErrorKind { 113 return stack.DestinationPortUnreachableTransportError 114 } 115 116 var _ stack.TransportError = (*icmpv4DestinationProtoUnreachableSockError)(nil) 117 118 // icmpv4DestinationProtoUnreachableSockError is an ICMPv4 Destination Protocol 119 // Unreachable error. 120 // 121 // It indicates that a packet reached the destination host, but the transport 122 // protocol was not reachable 123 // 124 // +stateify savable 125 type icmpv4DestinationProtoUnreachableSockError struct { 126 icmpv4DestinationUnreachableSockError 127 } 128 129 // Code implements tcpip.SockErrorCause. 130 func (*icmpv4DestinationProtoUnreachableSockError) Code() uint8 { 131 return uint8(header.ICMPv4ProtoUnreachable) 132 } 133 134 // Kind implements stack.TransportError. 135 func (*icmpv4DestinationProtoUnreachableSockError) Kind() stack.TransportErrorKind { 136 return stack.DestinationProtoUnreachableTransportError 137 } 138 139 var _ stack.TransportError = (*icmpv4SourceRouteFailedSockError)(nil) 140 141 // icmpv4SourceRouteFailedSockError is an ICMPv4 Destination Unreachable error 142 // due to source route failed. 143 // 144 // +stateify savable 145 type icmpv4SourceRouteFailedSockError struct { 146 icmpv4DestinationUnreachableSockError 147 } 148 149 // Code implements tcpip.SockErrorCause. 150 func (*icmpv4SourceRouteFailedSockError) Code() uint8 { 151 return uint8(header.ICMPv4SourceRouteFailed) 152 } 153 154 // Kind implements stack.TransportError. 155 func (*icmpv4SourceRouteFailedSockError) Kind() stack.TransportErrorKind { 156 return stack.SourceRouteFailedTransportError 157 } 158 159 var _ stack.TransportError = (*icmpv4SourceHostIsolatedSockError)(nil) 160 161 // icmpv4SourceHostIsolatedSockError is an ICMPv4 Destination Unreachable error 162 // due to source host isolated (not on the network). 163 // 164 // +stateify savable 165 type icmpv4SourceHostIsolatedSockError struct { 166 icmpv4DestinationUnreachableSockError 167 } 168 169 // Code implements tcpip.SockErrorCause. 170 func (*icmpv4SourceHostIsolatedSockError) Code() uint8 { 171 return uint8(header.ICMPv4SourceHostIsolated) 172 } 173 174 // Kind implements stack.TransportError. 175 func (*icmpv4SourceHostIsolatedSockError) Kind() stack.TransportErrorKind { 176 return stack.SourceHostIsolatedTransportError 177 } 178 179 var _ stack.TransportError = (*icmpv4DestinationHostUnknownSockError)(nil) 180 181 // icmpv4DestinationHostUnknownSockError is an ICMPv4 Destination Unreachable 182 // error due to destination host unknown/down. 183 // 184 // +stateify savable 185 type icmpv4DestinationHostUnknownSockError struct { 186 icmpv4DestinationUnreachableSockError 187 } 188 189 // Code implements tcpip.SockErrorCause. 190 func (*icmpv4DestinationHostUnknownSockError) Code() uint8 { 191 return uint8(header.ICMPv4DestinationHostUnknown) 192 } 193 194 // Kind implements stack.TransportError. 195 func (*icmpv4DestinationHostUnknownSockError) Kind() stack.TransportErrorKind { 196 return stack.DestinationHostDownTransportError 197 } 198 199 var _ stack.TransportError = (*icmpv4FragmentationNeededSockError)(nil) 200 201 // icmpv4FragmentationNeededSockError is an ICMPv4 Destination Unreachable error 202 // due to fragmentation being required but the packet was set to not be 203 // fragmented. 204 // 205 // It indicates that a link exists on the path to the destination with an MTU 206 // that is too small to carry the packet. 207 // 208 // +stateify savable 209 type icmpv4FragmentationNeededSockError struct { 210 icmpv4DestinationUnreachableSockError 211 212 mtu uint32 213 } 214 215 // Code implements tcpip.SockErrorCause. 216 func (*icmpv4FragmentationNeededSockError) Code() uint8 { 217 return uint8(header.ICMPv4FragmentationNeeded) 218 } 219 220 // Info implements tcpip.SockErrorCause. 221 func (e *icmpv4FragmentationNeededSockError) Info() uint32 { 222 return e.mtu 223 } 224 225 // Kind implements stack.TransportError. 226 func (*icmpv4FragmentationNeededSockError) Kind() stack.TransportErrorKind { 227 return stack.PacketTooBigTransportError 228 } 229 230 func (e *endpoint) checkLocalAddress(addr tcpip.Address) bool { 231 if e.nic.Spoofing() { 232 return true 233 } 234 235 if addressEndpoint := e.AcquireAssignedAddress(addr, false, stack.NeverPrimaryEndpoint, true /* readOnly */); addressEndpoint != nil { 236 return true 237 } 238 return false 239 } 240 241 // handleControl handles the case when an ICMP error packet contains the headers 242 // of the original packet that caused the ICMP one to be sent. This information 243 // is used to find out which transport endpoint must be notified about the ICMP 244 // packet. We only expect the payload, not the enclosing ICMP packet. 245 func (e *endpoint) handleControl(errInfo stack.TransportError, pkt *stack.PacketBuffer) { 246 h, ok := pkt.Data().PullUp(header.IPv4MinimumSize) 247 if !ok { 248 return 249 } 250 hdr := header.IPv4(h) 251 252 // We don't use IsValid() here because ICMP only requires that the IP 253 // header plus 8 bytes of the transport header be included. So it's 254 // likely that it is truncated, which would cause IsValid to return 255 // false. 256 // 257 // Drop packet if it doesn't have the basic IPv4 header or if the 258 // original source address doesn't match an address we own. 259 srcAddr := hdr.SourceAddress() 260 if !e.checkLocalAddress(srcAddr) { 261 return 262 } 263 264 hlen := int(hdr.HeaderLength()) 265 if pkt.Data().Size() < hlen || hdr.FragmentOffset() != 0 { 266 // We won't be able to handle this if it doesn't contain the 267 // full IPv4 header, or if it's a fragment not at offset 0 268 // (because it won't have the transport header). 269 return 270 } 271 272 // Keep needed information before trimming header. 273 p := hdr.TransportProtocol() 274 dstAddr := hdr.DestinationAddress() 275 // Skip the ip header, then deliver the error. 276 if _, ok := pkt.Data().Consume(hlen); !ok { 277 panic(fmt.Sprintf("could not consume the IP header of %d bytes", hlen)) 278 } 279 e.dispatcher.DeliverTransportError(srcAddr, dstAddr, ProtocolNumber, p, errInfo, pkt) 280 } 281 282 func (e *endpoint) handleICMP(pkt *stack.PacketBuffer) { 283 received := e.stats.icmp.packetsReceived 284 h := header.ICMPv4(pkt.TransportHeader().Slice()) 285 if len(h) < header.ICMPv4MinimumSize { 286 received.invalid.Increment() 287 return 288 } 289 290 // Only do in-stack processing if the checksum is correct. 291 if checksum.Checksum(h, pkt.Data().Checksum()) != 0xffff { 292 received.invalid.Increment() 293 // It's possible that a raw socket expects to receive this regardless 294 // of checksum errors. If it's an echo request we know it's safe because 295 // we are the only handler, however other types do not cope well with 296 // packets with checksum errors. 297 switch h.Type() { 298 case header.ICMPv4Echo: 299 e.dispatcher.DeliverTransportPacket(header.ICMPv4ProtocolNumber, pkt) 300 } 301 return 302 } 303 304 iph := header.IPv4(pkt.NetworkHeader().Slice()) 305 var newOptions header.IPv4Options 306 if opts := iph.Options(); len(opts) != 0 { 307 // RFC 1122 section 3.2.2.6 (page 43) (and similar for other round trip 308 // type ICMP packets): 309 // If a Record Route and/or Time Stamp option is received in an 310 // ICMP Echo Request, this option (these options) SHOULD be 311 // updated to include the current host and included in the IP 312 // header of the Echo Reply message, without "truncation". 313 // Thus, the recorded route will be for the entire round trip. 314 // 315 // So we need to let the option processor know how it should handle them. 316 var op optionsUsage 317 if h.Type() == header.ICMPv4Echo { 318 op = &optionUsageEcho{} 319 } else { 320 op = &optionUsageReceive{} 321 } 322 var optProblem *header.IPv4OptParameterProblem 323 newOptions, _, optProblem = e.processIPOptions(pkt, opts, op) 324 if optProblem != nil { 325 if optProblem.NeedICMP { 326 _ = e.protocol.returnError(&icmpReasonParamProblem{ 327 pointer: optProblem.Pointer, 328 }, pkt, true /* deliveredLocally */) 329 e.stats.ip.MalformedPacketsReceived.Increment() 330 } 331 return 332 } 333 copied := copy(opts, newOptions) 334 if copied != len(newOptions) { 335 panic(fmt.Sprintf("copied %d bytes of new options, expected %d bytes", copied, len(newOptions))) 336 } 337 for i := copied; i < len(opts); i++ { 338 // Pad with 0 (EOL). RFC 791 page 23 says "The padding is zero". 339 opts[i] = byte(header.IPv4OptionListEndType) 340 } 341 } 342 343 // TODO(b/112892170): Meaningfully handle all ICMP types. 344 switch h.Type() { 345 case header.ICMPv4Echo: 346 received.echoRequest.Increment() 347 348 // DeliverTransportPacket may modify pkt so don't use it beyond 349 // this point. Make a deep copy of the data before pkt gets sent as we will 350 // be modifying fields. Both the ICMP header (with its type modified to 351 // EchoReply) and payload are reused in the reply packet. 352 // 353 // TODO(gvisor.dev/issue/4399): The copy may not be needed if there are no 354 // waiting endpoints. Consider moving responsibility for doing the copy to 355 // DeliverTransportPacket so that is is only done when needed. 356 replyData := stack.PayloadSince(pkt.TransportHeader()) 357 defer replyData.Release() 358 ipHdr := header.IPv4(pkt.NetworkHeader().Slice()) 359 localAddressBroadcast := pkt.NetworkPacketInfo.LocalAddressBroadcast 360 361 // It's possible that a raw socket expects to receive this. 362 e.dispatcher.DeliverTransportPacket(header.ICMPv4ProtocolNumber, pkt) 363 pkt = nil 364 365 sent := e.stats.icmp.packetsSent 366 if !e.protocol.allowICMPReply(header.ICMPv4EchoReply, header.ICMPv4UnusedCode) { 367 sent.rateLimited.Increment() 368 return 369 } 370 371 // As per RFC 1122 section 3.2.1.3, when a host sends any datagram, the IP 372 // source address MUST be one of its own IP addresses (but not a broadcast 373 // or multicast address). 374 localAddr := ipHdr.DestinationAddress() 375 if localAddressBroadcast || header.IsV4MulticastAddress(localAddr) { 376 localAddr = tcpip.Address{} 377 } 378 379 r, err := e.protocol.stack.FindRoute(e.nic.ID(), localAddr, ipHdr.SourceAddress(), ProtocolNumber, false /* multicastLoop */) 380 if err != nil { 381 // If we cannot find a route to the destination, silently drop the packet. 382 return 383 } 384 defer r.Release() 385 386 outgoingEP, ok := e.protocol.getEndpointForNIC(r.NICID()) 387 if !ok { 388 // The outgoing NIC went away. 389 sent.dropped.Increment() 390 return 391 } 392 393 // Because IP and ICMP are so closely intertwined, we need to handcraft our 394 // IP header to be able to follow RFC 792. The wording on page 13 is as 395 // follows: 396 // IP Fields: 397 // Addresses 398 // The address of the source in an echo message will be the 399 // destination of the echo reply message. To form an echo reply 400 // message, the source and destination addresses are simply reversed, 401 // the type code changed to 0, and the checksum recomputed. 402 // 403 // This was interpreted by early implementors to mean that all options must 404 // be copied from the echo request IP header to the echo reply IP header 405 // and this behaviour is still relied upon by some applications. 406 // 407 // Create a copy of the IP header we received, options and all, and change 408 // The fields we need to alter. 409 // 410 // We need to produce the entire packet in the data segment in order to 411 // use WriteHeaderIncludedPacket(). WriteHeaderIncludedPacket sets the 412 // total length and the header checksum so we don't need to set those here. 413 // 414 // Take the base of the incoming request IP header but replace the options. 415 replyHeaderLength := uint8(header.IPv4MinimumSize + len(newOptions)) 416 replyIPHdrView := buffer.NewView(int(replyHeaderLength)) 417 replyIPHdrView.Write(iph[:header.IPv4MinimumSize]) 418 replyIPHdrView.Write(newOptions) 419 replyIPHdr := header.IPv4(replyIPHdrView.AsSlice()) 420 replyIPHdr.SetHeaderLength(replyHeaderLength) 421 replyIPHdr.SetSourceAddress(r.LocalAddress()) 422 replyIPHdr.SetDestinationAddress(r.RemoteAddress()) 423 replyIPHdr.SetTTL(r.DefaultTTL()) 424 replyIPHdr.SetTotalLength(uint16(len(replyIPHdr) + len(replyData.AsSlice()))) 425 replyIPHdr.SetChecksum(0) 426 replyIPHdr.SetChecksum(^replyIPHdr.CalculateChecksum()) 427 428 replyICMPHdr := header.ICMPv4(replyData.AsSlice()) 429 replyICMPHdr.SetType(header.ICMPv4EchoReply) 430 replyICMPHdr.SetChecksum(0) 431 replyICMPHdr.SetChecksum(^checksum.Checksum(replyData.AsSlice(), 0)) 432 433 replyBuf := buffer.MakeWithView(replyIPHdrView) 434 replyBuf.Append(replyData.Clone()) 435 replyPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{ 436 ReserveHeaderBytes: int(r.MaxHeaderLength()), 437 Payload: replyBuf, 438 }) 439 defer replyPkt.DecRef() 440 // Populate the network/transport headers in the packet buffer so the 441 // ICMP packet goes through IPTables. 442 if ok := parse.IPv4(replyPkt); !ok { 443 panic("expected to parse IPv4 header we just created") 444 } 445 if ok := parse.ICMPv4(replyPkt); !ok { 446 panic("expected to parse ICMPv4 header we just created") 447 } 448 449 if err := outgoingEP.writePacket(r, replyPkt); err != nil { 450 sent.dropped.Increment() 451 return 452 } 453 sent.echoReply.Increment() 454 455 case header.ICMPv4EchoReply: 456 received.echoReply.Increment() 457 458 // ICMP sockets expect the ICMP header to be present, so we don't consume 459 // the ICMP header. 460 e.dispatcher.DeliverTransportPacket(header.ICMPv4ProtocolNumber, pkt) 461 462 case header.ICMPv4DstUnreachable: 463 received.dstUnreachable.Increment() 464 465 mtu := h.MTU() 466 code := h.Code() 467 switch code { 468 case header.ICMPv4NetUnreachable, 469 header.ICMPv4DestinationNetworkUnknown, 470 header.ICMPv4NetUnreachableForTos, 471 header.ICMPv4NetProhibited: 472 e.handleControl(&icmpv4DestinationNetUnreachableSockError{}, pkt) 473 case header.ICMPv4HostUnreachable, 474 header.ICMPv4HostProhibited, 475 header.ICMPv4AdminProhibited, 476 header.ICMPv4HostUnreachableForTos, 477 header.ICMPv4HostPrecedenceViolation, 478 header.ICMPv4PrecedenceCutInEffect: 479 e.handleControl(&icmpv4DestinationHostUnreachableSockError{}, pkt) 480 case header.ICMPv4PortUnreachable: 481 e.handleControl(&icmpv4DestinationPortUnreachableSockError{}, pkt) 482 case header.ICMPv4FragmentationNeeded: 483 networkMTU, err := calculateNetworkMTU(uint32(mtu), header.IPv4MinimumSize) 484 if err != nil { 485 networkMTU = 0 486 } 487 e.handleControl(&icmpv4FragmentationNeededSockError{mtu: networkMTU}, pkt) 488 case header.ICMPv4ProtoUnreachable: 489 e.handleControl(&icmpv4DestinationProtoUnreachableSockError{}, pkt) 490 case header.ICMPv4SourceRouteFailed: 491 e.handleControl(&icmpv4SourceRouteFailedSockError{}, pkt) 492 case header.ICMPv4SourceHostIsolated: 493 e.handleControl(&icmpv4SourceHostIsolatedSockError{}, pkt) 494 case header.ICMPv4DestinationHostUnknown: 495 e.handleControl(&icmpv4DestinationHostUnknownSockError{}, pkt) 496 } 497 case header.ICMPv4SrcQuench: 498 received.srcQuench.Increment() 499 500 case header.ICMPv4Redirect: 501 received.redirect.Increment() 502 503 case header.ICMPv4TimeExceeded: 504 received.timeExceeded.Increment() 505 506 case header.ICMPv4ParamProblem: 507 received.paramProblem.Increment() 508 509 case header.ICMPv4Timestamp: 510 received.timestamp.Increment() 511 512 case header.ICMPv4TimestampReply: 513 received.timestampReply.Increment() 514 515 case header.ICMPv4InfoRequest: 516 received.infoRequest.Increment() 517 518 case header.ICMPv4InfoReply: 519 received.infoReply.Increment() 520 521 default: 522 received.invalid.Increment() 523 } 524 } 525 526 // ======= ICMP Error packet generation ========= 527 528 // icmpReason is a marker interface for IPv4 specific ICMP errors. 529 type icmpReason interface { 530 isICMPReason() 531 } 532 533 // icmpReasonNetworkProhibited is an error where the destination network is 534 // prohibited. 535 type icmpReasonNetworkProhibited struct{} 536 537 func (*icmpReasonNetworkProhibited) isICMPReason() {} 538 539 // icmpReasonHostProhibited is an error where the destination host is 540 // prohibited. 541 type icmpReasonHostProhibited struct{} 542 543 func (*icmpReasonHostProhibited) isICMPReason() {} 544 545 // icmpReasonAdministrativelyProhibited is an error where the destination is 546 // administratively prohibited. 547 type icmpReasonAdministrativelyProhibited struct{} 548 549 func (*icmpReasonAdministrativelyProhibited) isICMPReason() {} 550 551 // icmpReasonPortUnreachable is an error where the transport protocol has no 552 // listener and no alternative means to inform the sender. 553 type icmpReasonPortUnreachable struct{} 554 555 func (*icmpReasonPortUnreachable) isICMPReason() {} 556 557 // icmpReasonProtoUnreachable is an error where the transport protocol is 558 // not supported. 559 type icmpReasonProtoUnreachable struct{} 560 561 func (*icmpReasonProtoUnreachable) isICMPReason() {} 562 563 // icmpReasonTTLExceeded is an error where a packet's time to live exceeded in 564 // transit to its final destination, as per RFC 792 page 6, Time Exceeded 565 // Message. 566 type icmpReasonTTLExceeded struct{} 567 568 func (*icmpReasonTTLExceeded) isICMPReason() {} 569 570 // icmpReasonReassemblyTimeout is an error where insufficient fragments are 571 // received to complete reassembly of a packet within a configured time after 572 // the reception of the first-arriving fragment of that packet. 573 type icmpReasonReassemblyTimeout struct{} 574 575 func (*icmpReasonReassemblyTimeout) isICMPReason() {} 576 577 // icmpReasonParamProblem is an error to use to request a Parameter Problem 578 // message to be sent. 579 type icmpReasonParamProblem struct { 580 pointer byte 581 } 582 583 func (*icmpReasonParamProblem) isICMPReason() {} 584 585 // icmpReasonNetworkUnreachable is an error in which the network specified in 586 // the internet destination field of the datagram is unreachable. 587 type icmpReasonNetworkUnreachable struct{} 588 589 func (*icmpReasonNetworkUnreachable) isICMPReason() {} 590 591 // icmpReasonFragmentationNeeded is an error where a packet requires 592 // fragmentation while also having the Don't Fragment flag set, as per RFC 792 593 // page 3, Destination Unreachable Message. 594 type icmpReasonFragmentationNeeded struct{} 595 596 func (*icmpReasonFragmentationNeeded) isICMPReason() {} 597 598 // icmpReasonHostUnreachable is an error in which the host specified in the 599 // internet destination field of the datagram is unreachable. 600 type icmpReasonHostUnreachable struct{} 601 602 func (*icmpReasonHostUnreachable) isICMPReason() {} 603 604 // returnError takes an error descriptor and generates the appropriate ICMP 605 // error packet for IPv4 and sends it back to the remote device that sent 606 // the problematic packet. It incorporates as much of that packet as 607 // possible as well as any error metadata as is available. returnError 608 // expects pkt to hold a valid IPv4 packet as per the wire format. 609 func (p *protocol) returnError(reason icmpReason, pkt *stack.PacketBuffer, deliveredLocally bool) tcpip.Error { 610 origIPHdr := header.IPv4(pkt.NetworkHeader().Slice()) 611 origIPHdrSrc := origIPHdr.SourceAddress() 612 origIPHdrDst := origIPHdr.DestinationAddress() 613 614 // We check we are responding only when we are allowed to. 615 // See RFC 1812 section 4.3.2.7 (shown below). 616 // 617 // ========= 618 // 4.3.2.7 When Not to Send ICMP Errors 619 // 620 // An ICMP error message MUST NOT be sent as the result of receiving: 621 // 622 // o An ICMP error message, or 623 // 624 // o A packet which fails the IP header validation tests described in 625 // Section [5.2.2] (except where that section specifically permits 626 // the sending of an ICMP error message), or 627 // 628 // o A packet destined to an IP broadcast or IP multicast address, or 629 // 630 // o A packet sent as a Link Layer broadcast or multicast, or 631 // 632 // o Any fragment of a datagram other then the first fragment (i.e., a 633 // packet for which the fragment offset in the IP header is nonzero). 634 // 635 // TODO(gvisor.dev/issues/4058): Make sure we don't send ICMP errors in 636 // response to a non-initial fragment, but it currently can not happen. 637 if pkt.NetworkPacketInfo.LocalAddressBroadcast || header.IsV4MulticastAddress(origIPHdrDst) || origIPHdrSrc == header.IPv4Any { 638 return nil 639 } 640 641 // If the packet wasn't delivered locally, do not use the packet's destination 642 // address as the response's source address as we should not not own the 643 // destination address of a packet we are forwarding. 644 localAddr := origIPHdrDst 645 if !deliveredLocally { 646 localAddr = tcpip.Address{} 647 } 648 649 // Even if we were able to receive a packet from some remote, we may not have 650 // a route to it - the remote may be blocked via routing rules. We must always 651 // consult our routing table and find a route to the remote before sending any 652 // packet. 653 route, err := p.stack.FindRoute(pkt.NICID, localAddr, origIPHdrSrc, ProtocolNumber, false /* multicastLoop */) 654 if err != nil { 655 return err 656 } 657 defer route.Release() 658 659 p.mu.Lock() 660 // We retrieve an endpoint using the newly constructed route's NICID rather 661 // than the packet's NICID. The packet's NICID corresponds to the NIC on 662 // which it arrived, which isn't necessarily the same as the NIC on which it 663 // will be transmitted. On the other hand, the route's NIC *is* guaranteed 664 // to be the NIC on which the packet will be transmitted. 665 netEP, ok := p.eps[route.NICID()] 666 p.mu.Unlock() 667 if !ok { 668 return &tcpip.ErrNotConnected{} 669 } 670 671 transportHeader := pkt.TransportHeader().Slice() 672 673 // Don't respond to icmp error packets. 674 if origIPHdr.Protocol() == uint8(header.ICMPv4ProtocolNumber) { 675 // We need to decide to explicitly name the packets we can respond to or 676 // the ones we can not respond to. The decision is somewhat arbitrary and 677 // if problems arise this could be reversed. It was judged less of a breach 678 // of protocol to not respond to unknown non-error packets than to respond 679 // to unknown error packets so we take the first approach. 680 if len(transportHeader) < header.ICMPv4MinimumSize { 681 // The packet is malformed. 682 return nil 683 } 684 switch header.ICMPv4(transportHeader).Type() { 685 case 686 header.ICMPv4EchoReply, 687 header.ICMPv4Echo, 688 header.ICMPv4Timestamp, 689 header.ICMPv4TimestampReply, 690 header.ICMPv4InfoRequest, 691 header.ICMPv4InfoReply: 692 default: 693 // Assume any type we don't know about may be an error type. 694 return nil 695 } 696 } 697 698 sent := netEP.stats.icmp.packetsSent 699 icmpType, icmpCode, counter, pointer := func() (header.ICMPv4Type, header.ICMPv4Code, tcpip.MultiCounterStat, byte) { 700 switch reason := reason.(type) { 701 case *icmpReasonNetworkProhibited: 702 return header.ICMPv4DstUnreachable, header.ICMPv4NetProhibited, sent.dstUnreachable, 0 703 case *icmpReasonHostProhibited: 704 return header.ICMPv4DstUnreachable, header.ICMPv4HostProhibited, sent.dstUnreachable, 0 705 case *icmpReasonAdministrativelyProhibited: 706 return header.ICMPv4DstUnreachable, header.ICMPv4AdminProhibited, sent.dstUnreachable, 0 707 case *icmpReasonPortUnreachable: 708 return header.ICMPv4DstUnreachable, header.ICMPv4PortUnreachable, sent.dstUnreachable, 0 709 case *icmpReasonProtoUnreachable: 710 return header.ICMPv4DstUnreachable, header.ICMPv4ProtoUnreachable, sent.dstUnreachable, 0 711 case *icmpReasonNetworkUnreachable: 712 return header.ICMPv4DstUnreachable, header.ICMPv4NetUnreachable, sent.dstUnreachable, 0 713 case *icmpReasonHostUnreachable: 714 return header.ICMPv4DstUnreachable, header.ICMPv4HostUnreachable, sent.dstUnreachable, 0 715 case *icmpReasonFragmentationNeeded: 716 return header.ICMPv4DstUnreachable, header.ICMPv4FragmentationNeeded, sent.dstUnreachable, 0 717 case *icmpReasonTTLExceeded: 718 return header.ICMPv4TimeExceeded, header.ICMPv4TTLExceeded, sent.timeExceeded, 0 719 case *icmpReasonReassemblyTimeout: 720 return header.ICMPv4TimeExceeded, header.ICMPv4ReassemblyTimeout, sent.timeExceeded, 0 721 case *icmpReasonParamProblem: 722 return header.ICMPv4ParamProblem, header.ICMPv4UnusedCode, sent.paramProblem, reason.pointer 723 default: 724 panic(fmt.Sprintf("unsupported ICMP type %T", reason)) 725 } 726 }() 727 728 if !p.allowICMPReply(icmpType, icmpCode) { 729 sent.rateLimited.Increment() 730 return nil 731 } 732 733 // Now work out how much of the triggering packet we should return. 734 // As per RFC 1812 Section 4.3.2.3 735 // 736 // ICMP datagram SHOULD contain as much of the original 737 // datagram as possible without the length of the ICMP 738 // datagram exceeding 576 bytes. 739 // 740 // NOTE: The above RFC referenced is different from the original 741 // recommendation in RFC 1122 and RFC 792 where it mentioned that at 742 // least 8 bytes of the payload must be included. Today linux and other 743 // systems implement the RFC 1812 definition and not the original 744 // requirement. We treat 8 bytes as the minimum but will try send more. 745 mtu := int(route.MTU()) 746 const maxIPData = header.IPv4MinimumProcessableDatagramSize - header.IPv4MinimumSize 747 if mtu > maxIPData { 748 mtu = maxIPData 749 } 750 available := mtu - header.ICMPv4MinimumSize 751 752 if available < len(origIPHdr)+header.ICMPv4MinimumErrorPayloadSize { 753 return nil 754 } 755 756 payloadLen := len(origIPHdr) + len(transportHeader) + pkt.Data().Size() 757 if payloadLen > available { 758 payloadLen = available 759 } 760 761 // The buffers used by pkt may be used elsewhere in the system. 762 // For example, an AF_RAW or AF_PACKET socket may use what the transport 763 // protocol considers an unreachable destination. Thus we deep copy pkt to 764 // prevent multiple ownership and SR errors. The new copy is a vectorized 765 // view with the entire incoming IP packet reassembled and truncated as 766 // required. This is now the payload of the new ICMP packet and no longer 767 // considered a packet in its own right. 768 769 payload := buffer.MakeWithView(pkt.NetworkHeader().View()) 770 payload.Append(pkt.TransportHeader().View()) 771 if dataCap := payloadLen - int(payload.Size()); dataCap > 0 { 772 buf := pkt.Data().ToBuffer() 773 buf.Truncate(int64(dataCap)) 774 payload.Merge(&buf) 775 } else { 776 payload.Truncate(int64(payloadLen)) 777 } 778 779 icmpPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{ 780 ReserveHeaderBytes: int(route.MaxHeaderLength()) + header.ICMPv4MinimumSize, 781 Payload: payload, 782 }) 783 defer icmpPkt.DecRef() 784 785 icmpPkt.TransportProtocolNumber = header.ICMPv4ProtocolNumber 786 787 icmpHdr := header.ICMPv4(icmpPkt.TransportHeader().Push(header.ICMPv4MinimumSize)) 788 icmpHdr.SetCode(icmpCode) 789 icmpHdr.SetType(icmpType) 790 icmpHdr.SetPointer(pointer) 791 icmpHdr.SetChecksum(header.ICMPv4Checksum(icmpHdr, icmpPkt.Data().Checksum())) 792 793 if err := route.WritePacket( 794 stack.NetworkHeaderParams{ 795 Protocol: header.ICMPv4ProtocolNumber, 796 TTL: route.DefaultTTL(), 797 TOS: stack.DefaultTOS, 798 }, 799 icmpPkt, 800 ); err != nil { 801 sent.dropped.Increment() 802 return err 803 } 804 counter.Increment() 805 return nil 806 } 807 808 // OnReassemblyTimeout implements fragmentation.TimeoutHandler. 809 func (p *protocol) OnReassemblyTimeout(pkt *stack.PacketBuffer) { 810 // OnReassemblyTimeout sends a Time Exceeded Message, as per RFC 792: 811 // 812 // If a host reassembling a fragmented datagram cannot complete the 813 // reassembly due to missing fragments within its time limit it discards the 814 // datagram, and it may send a time exceeded message. 815 // 816 // If fragment zero is not available then no time exceeded need be sent at 817 // all. 818 if pkt != nil { 819 p.returnError(&icmpReasonReassemblyTimeout{}, pkt, true /* deliveredLocally */) 820 } 821 }