gvisor.dev/gvisor@v0.0.0-20240520182842-f9d4d51c7e0f/pkg/tcpip/stack/stack.go (about)

     1  // Copyright 2018 The gVisor Authors.
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  // Package stack provides the glue between networking protocols and the
    16  // consumers of the networking stack.
    17  //
    18  // For consumers, the only function of interest is New(), everything else is
    19  // provided by the tcpip/public package.
    20  package stack
    21  
    22  import (
    23  	"encoding/binary"
    24  	"fmt"
    25  	"io"
    26  	"math/rand"
    27  	"sync/atomic"
    28  	"time"
    29  
    30  	"golang.org/x/time/rate"
    31  	"gvisor.dev/gvisor/pkg/atomicbitops"
    32  	"gvisor.dev/gvisor/pkg/buffer"
    33  	"gvisor.dev/gvisor/pkg/log"
    34  	cryptorand "gvisor.dev/gvisor/pkg/rand"
    35  	"gvisor.dev/gvisor/pkg/tcpip"
    36  	"gvisor.dev/gvisor/pkg/tcpip/header"
    37  	"gvisor.dev/gvisor/pkg/tcpip/ports"
    38  	"gvisor.dev/gvisor/pkg/waiter"
    39  )
    40  
    41  const (
    42  	// DefaultTOS is the default type of service value for network endpoints.
    43  	DefaultTOS = 0
    44  )
    45  
    46  type transportProtocolState struct {
    47  	proto          TransportProtocol
    48  	defaultHandler func(id TransportEndpointID, pkt *PacketBuffer) bool
    49  }
    50  
    51  // RestoredEndpoint is an endpoint that needs to be restored.
    52  type RestoredEndpoint interface {
    53  	// Restore restores an endpoint. This can be used to restart background
    54  	// workers such as protocol goroutines. This must be called after all
    55  	// indirect dependencies of the endpoint has been restored, which
    56  	// generally implies at the end of the restore process.
    57  	Restore(*Stack)
    58  }
    59  
    60  // ResumableEndpoint is an endpoint that needs to be resumed after save.
    61  type ResumableEndpoint interface {
    62  	// Resume resumes an endpoint.
    63  	Resume()
    64  }
    65  
    66  // uniqueIDGenerator is a default unique ID generator.
    67  type uniqueIDGenerator atomicbitops.Uint64
    68  
    69  func (u *uniqueIDGenerator) UniqueID() uint64 {
    70  	return ((*atomicbitops.Uint64)(u)).Add(1)
    71  }
    72  
    73  var netRawMissingLogger = log.BasicRateLimitedLogger(time.Minute)
    74  
    75  // Stack is a networking stack, with all supported protocols, NICs, and route
    76  // table.
    77  //
    78  // LOCK ORDERING: mu > routeMu.
    79  type Stack struct {
    80  	transportProtocols map[tcpip.TransportProtocolNumber]*transportProtocolState
    81  	networkProtocols   map[tcpip.NetworkProtocolNumber]NetworkProtocol
    82  
    83  	// rawFactory creates raw endpoints. If nil, raw endpoints are
    84  	// disabled. It is set during Stack creation and is immutable.
    85  	rawFactory                   RawFactory
    86  	packetEndpointWriteSupported bool
    87  
    88  	demux *transportDemuxer
    89  
    90  	stats tcpip.Stats
    91  
    92  	// routeMu protects annotated fields below.
    93  	routeMu routeStackRWMutex
    94  
    95  	// +checklocks:routeMu
    96  	routeTable []tcpip.Route
    97  
    98  	mu stackRWMutex
    99  	// +checklocks:mu
   100  	nics                     map[tcpip.NICID]*nic
   101  	defaultForwardingEnabled map[tcpip.NetworkProtocolNumber]struct{}
   102  
   103  	// cleanupEndpointsMu protects cleanupEndpoints.
   104  	cleanupEndpointsMu cleanupEndpointsMutex
   105  	// +checklocks:cleanupEndpointsMu
   106  	cleanupEndpoints map[TransportEndpoint]struct{}
   107  
   108  	*ports.PortManager
   109  
   110  	// If not nil, then any new endpoints will have this probe function
   111  	// invoked everytime they receive a TCP segment.
   112  	tcpProbeFunc atomic.Value // TCPProbeFunc
   113  
   114  	// clock is used to generate user-visible times.
   115  	clock tcpip.Clock
   116  
   117  	// handleLocal allows non-loopback interfaces to loop packets.
   118  	handleLocal bool
   119  
   120  	// tables are the iptables packet filtering and manipulation rules.
   121  	// TODO(gvisor.dev/issue/4595): S/R this field.
   122  	tables *IPTables
   123  
   124  	// restoredEndpoints is a list of endpoints that need to be restored if the
   125  	// stack is being restored.
   126  	restoredEndpoints []RestoredEndpoint
   127  
   128  	// resumableEndpoints is a list of endpoints that need to be resumed
   129  	// after save.
   130  	resumableEndpoints []ResumableEndpoint
   131  
   132  	// icmpRateLimiter is a global rate limiter for all ICMP messages generated
   133  	// by the stack.
   134  	icmpRateLimiter *ICMPRateLimiter
   135  
   136  	// seed is a one-time random value initialized at stack startup.
   137  	//
   138  	// TODO(gvisor.dev/issue/940): S/R this field.
   139  	seed uint32
   140  
   141  	// nudConfigs is the default NUD configurations used by interfaces.
   142  	nudConfigs NUDConfigurations
   143  
   144  	// nudDisp is the NUD event dispatcher that is used to send the netstack
   145  	// integrator NUD related events.
   146  	nudDisp NUDDispatcher
   147  
   148  	// uniqueIDGenerator is a generator of unique identifiers.
   149  	uniqueIDGenerator UniqueID
   150  
   151  	// randomGenerator is an injectable pseudo random generator that can be
   152  	// used when a random number is required. It must not be used in
   153  	// security-sensitive contexts.
   154  	insecureRNG *rand.Rand
   155  
   156  	// secureRNG is a cryptographically secure random number generator.
   157  	secureRNG cryptorand.RNG
   158  
   159  	// sendBufferSize holds the min/default/max send buffer sizes for
   160  	// endpoints other than TCP.
   161  	sendBufferSize tcpip.SendBufferSizeOption
   162  
   163  	// receiveBufferSize holds the min/default/max receive buffer sizes for
   164  	// endpoints other than TCP.
   165  	receiveBufferSize tcpip.ReceiveBufferSizeOption
   166  
   167  	// tcpInvalidRateLimit is the maximal rate for sending duplicate
   168  	// acknowledgements in response to incoming TCP packets that are for an existing
   169  	// connection but that are invalid due to any of the following reasons:
   170  	//
   171  	//   a) out-of-window sequence number.
   172  	//   b) out-of-window acknowledgement number.
   173  	//   c) PAWS check failure (when implemented).
   174  	//
   175  	// This is required to prevent potential ACK loops.
   176  	// Setting this to 0 will disable all rate limiting.
   177  	tcpInvalidRateLimit time.Duration
   178  
   179  	// tsOffsetSecret is the secret key for generating timestamp offsets
   180  	// initialized at stack startup.
   181  	tsOffsetSecret uint32
   182  }
   183  
   184  // UniqueID is an abstract generator of unique identifiers.
   185  type UniqueID interface {
   186  	UniqueID() uint64
   187  }
   188  
   189  // NetworkProtocolFactory instantiates a network protocol.
   190  //
   191  // NetworkProtocolFactory must not attempt to modify the stack, it may only
   192  // query the stack.
   193  type NetworkProtocolFactory func(*Stack) NetworkProtocol
   194  
   195  // TransportProtocolFactory instantiates a transport protocol.
   196  //
   197  // TransportProtocolFactory must not attempt to modify the stack, it may only
   198  // query the stack.
   199  type TransportProtocolFactory func(*Stack) TransportProtocol
   200  
   201  // Options contains optional Stack configuration.
   202  type Options struct {
   203  	// NetworkProtocols lists the network protocols to enable.
   204  	NetworkProtocols []NetworkProtocolFactory
   205  
   206  	// TransportProtocols lists the transport protocols to enable.
   207  	TransportProtocols []TransportProtocolFactory
   208  
   209  	// Clock is an optional clock used for timekeeping.
   210  	//
   211  	// If Clock is nil, tcpip.NewStdClock() will be used.
   212  	Clock tcpip.Clock
   213  
   214  	// Stats are optional statistic counters.
   215  	Stats tcpip.Stats
   216  
   217  	// HandleLocal indicates whether packets destined to their source
   218  	// should be handled by the stack internally (true) or outside the
   219  	// stack (false).
   220  	HandleLocal bool
   221  
   222  	// UniqueID is an optional generator of unique identifiers.
   223  	UniqueID UniqueID
   224  
   225  	// NUDConfigs is the default NUD configurations used by interfaces.
   226  	NUDConfigs NUDConfigurations
   227  
   228  	// NUDDisp is the NUD event dispatcher that an integrator can provide to
   229  	// receive NUD related events.
   230  	NUDDisp NUDDispatcher
   231  
   232  	// RawFactory produces raw endpoints. Raw endpoints are enabled only if
   233  	// this is non-nil.
   234  	RawFactory RawFactory
   235  
   236  	// AllowPacketEndpointWrite determines if packet endpoints support write
   237  	// operations.
   238  	AllowPacketEndpointWrite bool
   239  
   240  	// RandSource is an optional source to use to generate random
   241  	// numbers. If omitted it defaults to a Source seeded by the data
   242  	// returned by the stack secure RNG.
   243  	//
   244  	// RandSource must be thread-safe.
   245  	RandSource rand.Source
   246  
   247  	// IPTables are the initial iptables rules. If nil, DefaultIPTables will be
   248  	// used to construct the initial iptables rules.
   249  	// all traffic.
   250  	IPTables *IPTables
   251  
   252  	// DefaultIPTables is an optional iptables rules constructor that is called
   253  	// if IPTables is nil. If both fields are nil, iptables will allow all
   254  	// traffic.
   255  	DefaultIPTables func(clock tcpip.Clock, rand *rand.Rand) *IPTables
   256  
   257  	// SecureRNG is a cryptographically secure random number generator.
   258  	SecureRNG io.Reader
   259  }
   260  
   261  // TransportEndpointInfo holds useful information about a transport endpoint
   262  // which can be queried by monitoring tools.
   263  //
   264  // +stateify savable
   265  type TransportEndpointInfo struct {
   266  	// The following fields are initialized at creation time and are
   267  	// immutable.
   268  
   269  	NetProto   tcpip.NetworkProtocolNumber
   270  	TransProto tcpip.TransportProtocolNumber
   271  
   272  	// The following fields are protected by endpoint mu.
   273  
   274  	ID TransportEndpointID
   275  	// BindNICID and bindAddr are set via calls to Bind(). They are used to
   276  	// reject attempts to send data or connect via a different NIC or
   277  	// address
   278  	BindNICID tcpip.NICID
   279  	BindAddr  tcpip.Address
   280  	// RegisterNICID is the default NICID registered as a side-effect of
   281  	// connect or datagram write.
   282  	RegisterNICID tcpip.NICID
   283  }
   284  
   285  // AddrNetProtoLocked unwraps the specified address if it is a V4-mapped V6
   286  // address and returns the network protocol number to be used to communicate
   287  // with the specified address. It returns an error if the passed address is
   288  // incompatible with the receiver.
   289  //
   290  // Preconditon: the parent endpoint mu must be held while calling this method.
   291  func (t *TransportEndpointInfo) AddrNetProtoLocked(addr tcpip.FullAddress, v6only bool) (tcpip.FullAddress, tcpip.NetworkProtocolNumber, tcpip.Error) {
   292  	netProto := t.NetProto
   293  	switch addr.Addr.BitLen() {
   294  	case header.IPv4AddressSizeBits:
   295  		netProto = header.IPv4ProtocolNumber
   296  	case header.IPv6AddressSizeBits:
   297  		if header.IsV4MappedAddress(addr.Addr) {
   298  			netProto = header.IPv4ProtocolNumber
   299  			addr.Addr = tcpip.AddrFrom4Slice(addr.Addr.AsSlice()[header.IPv6AddressSize-header.IPv4AddressSize:])
   300  			if addr.Addr == header.IPv4Any {
   301  				addr.Addr = tcpip.Address{}
   302  			}
   303  		}
   304  	}
   305  
   306  	switch t.ID.LocalAddress.BitLen() {
   307  	case header.IPv4AddressSizeBits:
   308  		if addr.Addr.BitLen() == header.IPv6AddressSizeBits {
   309  			return tcpip.FullAddress{}, 0, &tcpip.ErrInvalidEndpointState{}
   310  		}
   311  	case header.IPv6AddressSizeBits:
   312  		if addr.Addr.BitLen() == header.IPv4AddressSizeBits {
   313  			return tcpip.FullAddress{}, 0, &tcpip.ErrNetworkUnreachable{}
   314  		}
   315  	}
   316  
   317  	switch {
   318  	case netProto == t.NetProto:
   319  	case netProto == header.IPv4ProtocolNumber && t.NetProto == header.IPv6ProtocolNumber:
   320  		if v6only {
   321  			return tcpip.FullAddress{}, 0, &tcpip.ErrHostUnreachable{}
   322  		}
   323  	default:
   324  		return tcpip.FullAddress{}, 0, &tcpip.ErrInvalidEndpointState{}
   325  	}
   326  
   327  	return addr, netProto, nil
   328  }
   329  
   330  // IsEndpointInfo is an empty method to implement the tcpip.EndpointInfo
   331  // marker interface.
   332  func (*TransportEndpointInfo) IsEndpointInfo() {}
   333  
   334  // New allocates a new networking stack with only the requested networking and
   335  // transport protocols configured with default options.
   336  //
   337  // Note, NDPConfigurations will be fixed before being used by the Stack. That
   338  // is, if an invalid value was provided, it will be reset to the default value.
   339  //
   340  // Protocol options can be changed by calling the
   341  // SetNetworkProtocolOption/SetTransportProtocolOption methods provided by the
   342  // stack. Please refer to individual protocol implementations as to what options
   343  // are supported.
   344  func New(opts Options) *Stack {
   345  	clock := opts.Clock
   346  	if clock == nil {
   347  		clock = tcpip.NewStdClock()
   348  	}
   349  
   350  	if opts.UniqueID == nil {
   351  		opts.UniqueID = new(uniqueIDGenerator)
   352  	}
   353  
   354  	if opts.SecureRNG == nil {
   355  		opts.SecureRNG = cryptorand.Reader
   356  	}
   357  	secureRNG := cryptorand.RNGFrom(opts.SecureRNG)
   358  
   359  	randSrc := opts.RandSource
   360  	if randSrc == nil {
   361  		var v int64
   362  		if err := binary.Read(opts.SecureRNG, binary.LittleEndian, &v); err != nil {
   363  			panic(err)
   364  		}
   365  		// Source provided by rand.NewSource is not thread-safe so
   366  		// we wrap it in a simple thread-safe version.
   367  		randSrc = &lockedRandomSource{src: rand.NewSource(v)}
   368  	}
   369  	insecureRNG := rand.New(randSrc)
   370  
   371  	if opts.IPTables == nil {
   372  		if opts.DefaultIPTables == nil {
   373  			opts.DefaultIPTables = DefaultTables
   374  		}
   375  		opts.IPTables = opts.DefaultIPTables(clock, insecureRNG)
   376  	}
   377  
   378  	opts.NUDConfigs.resetInvalidFields()
   379  
   380  	s := &Stack{
   381  		transportProtocols:           make(map[tcpip.TransportProtocolNumber]*transportProtocolState),
   382  		networkProtocols:             make(map[tcpip.NetworkProtocolNumber]NetworkProtocol),
   383  		nics:                         make(map[tcpip.NICID]*nic),
   384  		packetEndpointWriteSupported: opts.AllowPacketEndpointWrite,
   385  		defaultForwardingEnabled:     make(map[tcpip.NetworkProtocolNumber]struct{}),
   386  		cleanupEndpoints:             make(map[TransportEndpoint]struct{}),
   387  		PortManager:                  ports.NewPortManager(),
   388  		clock:                        clock,
   389  		stats:                        opts.Stats.FillIn(),
   390  		handleLocal:                  opts.HandleLocal,
   391  		tables:                       opts.IPTables,
   392  		icmpRateLimiter:              NewICMPRateLimiter(clock),
   393  		seed:                         secureRNG.Uint32(),
   394  		nudConfigs:                   opts.NUDConfigs,
   395  		uniqueIDGenerator:            opts.UniqueID,
   396  		nudDisp:                      opts.NUDDisp,
   397  		insecureRNG:                  insecureRNG,
   398  		secureRNG:                    secureRNG,
   399  		sendBufferSize: tcpip.SendBufferSizeOption{
   400  			Min:     MinBufferSize,
   401  			Default: DefaultBufferSize,
   402  			Max:     DefaultMaxBufferSize,
   403  		},
   404  		receiveBufferSize: tcpip.ReceiveBufferSizeOption{
   405  			Min:     MinBufferSize,
   406  			Default: DefaultBufferSize,
   407  			Max:     DefaultMaxBufferSize,
   408  		},
   409  		tcpInvalidRateLimit: defaultTCPInvalidRateLimit,
   410  		tsOffsetSecret:      secureRNG.Uint32(),
   411  	}
   412  
   413  	// Add specified network protocols.
   414  	for _, netProtoFactory := range opts.NetworkProtocols {
   415  		netProto := netProtoFactory(s)
   416  		s.networkProtocols[netProto.Number()] = netProto
   417  	}
   418  
   419  	// Add specified transport protocols.
   420  	for _, transProtoFactory := range opts.TransportProtocols {
   421  		transProto := transProtoFactory(s)
   422  		s.transportProtocols[transProto.Number()] = &transportProtocolState{
   423  			proto: transProto,
   424  		}
   425  	}
   426  
   427  	// Add the factory for raw endpoints, if present.
   428  	s.rawFactory = opts.RawFactory
   429  
   430  	// Create the global transport demuxer.
   431  	s.demux = newTransportDemuxer(s)
   432  
   433  	return s
   434  }
   435  
   436  // UniqueID returns a unique identifier.
   437  func (s *Stack) UniqueID() uint64 {
   438  	return s.uniqueIDGenerator.UniqueID()
   439  }
   440  
   441  // SetNetworkProtocolOption allows configuring individual protocol level
   442  // options. This method returns an error if the protocol is not supported or
   443  // option is not supported by the protocol implementation or the provided value
   444  // is incorrect.
   445  func (s *Stack) SetNetworkProtocolOption(network tcpip.NetworkProtocolNumber, option tcpip.SettableNetworkProtocolOption) tcpip.Error {
   446  	netProto, ok := s.networkProtocols[network]
   447  	if !ok {
   448  		return &tcpip.ErrUnknownProtocol{}
   449  	}
   450  	return netProto.SetOption(option)
   451  }
   452  
   453  // NetworkProtocolOption allows retrieving individual protocol level option
   454  // values. This method returns an error if the protocol is not supported or
   455  // option is not supported by the protocol implementation. E.g.:
   456  //
   457  //	var v ipv4.MyOption
   458  //	err := s.NetworkProtocolOption(tcpip.IPv4ProtocolNumber, &v)
   459  //	if err != nil {
   460  //		...
   461  //	}
   462  func (s *Stack) NetworkProtocolOption(network tcpip.NetworkProtocolNumber, option tcpip.GettableNetworkProtocolOption) tcpip.Error {
   463  	netProto, ok := s.networkProtocols[network]
   464  	if !ok {
   465  		return &tcpip.ErrUnknownProtocol{}
   466  	}
   467  	return netProto.Option(option)
   468  }
   469  
   470  // SetTransportProtocolOption allows configuring individual protocol level
   471  // options. This method returns an error if the protocol is not supported or
   472  // option is not supported by the protocol implementation or the provided value
   473  // is incorrect.
   474  func (s *Stack) SetTransportProtocolOption(transport tcpip.TransportProtocolNumber, option tcpip.SettableTransportProtocolOption) tcpip.Error {
   475  	transProtoState, ok := s.transportProtocols[transport]
   476  	if !ok {
   477  		return &tcpip.ErrUnknownProtocol{}
   478  	}
   479  	return transProtoState.proto.SetOption(option)
   480  }
   481  
   482  // TransportProtocolOption allows retrieving individual protocol level option
   483  // values. This method returns an error if the protocol is not supported or
   484  // option is not supported by the protocol implementation.
   485  //
   486  //	var v tcp.SACKEnabled
   487  //	if err := s.TransportProtocolOption(tcpip.TCPProtocolNumber, &v); err != nil {
   488  //		...
   489  //	}
   490  func (s *Stack) TransportProtocolOption(transport tcpip.TransportProtocolNumber, option tcpip.GettableTransportProtocolOption) tcpip.Error {
   491  	transProtoState, ok := s.transportProtocols[transport]
   492  	if !ok {
   493  		return &tcpip.ErrUnknownProtocol{}
   494  	}
   495  	return transProtoState.proto.Option(option)
   496  }
   497  
   498  // SendBufSizeProto is a protocol that can return its send buffer size.
   499  type SendBufSizeProto interface {
   500  	SendBufferSize() tcpip.TCPSendBufferSizeRangeOption
   501  }
   502  
   503  // TCPSendBufferLimits returns the TCP send buffer size limit.
   504  func (s *Stack) TCPSendBufferLimits() tcpip.TCPSendBufferSizeRangeOption {
   505  	return s.transportProtocols[header.TCPProtocolNumber].proto.(SendBufSizeProto).SendBufferSize()
   506  }
   507  
   508  // SetTransportProtocolHandler sets the per-stack default handler for the given
   509  // protocol.
   510  //
   511  // It must be called only during initialization of the stack. Changing it as the
   512  // stack is operating is not supported.
   513  func (s *Stack) SetTransportProtocolHandler(p tcpip.TransportProtocolNumber, h func(TransportEndpointID, *PacketBuffer) bool) {
   514  	state := s.transportProtocols[p]
   515  	if state != nil {
   516  		state.defaultHandler = h
   517  	}
   518  }
   519  
   520  // Clock returns the Stack's clock for retrieving the current time and
   521  // scheduling work.
   522  func (s *Stack) Clock() tcpip.Clock {
   523  	return s.clock
   524  }
   525  
   526  // Stats returns a mutable copy of the current stats.
   527  //
   528  // This is not generally exported via the public interface, but is available
   529  // internally.
   530  func (s *Stack) Stats() tcpip.Stats {
   531  	return s.stats
   532  }
   533  
   534  // SetNICForwarding enables or disables packet forwarding on the specified NIC
   535  // for the passed protocol.
   536  //
   537  // Returns the previous configuration on the NIC.
   538  func (s *Stack) SetNICForwarding(id tcpip.NICID, protocol tcpip.NetworkProtocolNumber, enable bool) (bool, tcpip.Error) {
   539  	s.mu.RLock()
   540  	defer s.mu.RUnlock()
   541  
   542  	nic, ok := s.nics[id]
   543  	if !ok {
   544  		return false, &tcpip.ErrUnknownNICID{}
   545  	}
   546  
   547  	return nic.setForwarding(protocol, enable)
   548  }
   549  
   550  // NICForwarding returns the forwarding configuration for the specified NIC.
   551  func (s *Stack) NICForwarding(id tcpip.NICID, protocol tcpip.NetworkProtocolNumber) (bool, tcpip.Error) {
   552  	s.mu.RLock()
   553  	defer s.mu.RUnlock()
   554  
   555  	nic, ok := s.nics[id]
   556  	if !ok {
   557  		return false, &tcpip.ErrUnknownNICID{}
   558  	}
   559  
   560  	return nic.forwarding(protocol)
   561  }
   562  
   563  // SetForwardingDefaultAndAllNICs sets packet forwarding for all NICs for the
   564  // passed protocol and sets the default setting for newly created NICs.
   565  func (s *Stack) SetForwardingDefaultAndAllNICs(protocol tcpip.NetworkProtocolNumber, enable bool) tcpip.Error {
   566  	s.mu.Lock()
   567  	defer s.mu.Unlock()
   568  
   569  	doneOnce := false
   570  	for id, nic := range s.nics {
   571  		if _, err := nic.setForwarding(protocol, enable); err != nil {
   572  			// Expect forwarding to be settable on all interfaces if it was set on
   573  			// one.
   574  			if doneOnce {
   575  				panic(fmt.Sprintf("nic(id=%d).setForwarding(%d, %t): %s", id, protocol, enable, err))
   576  			}
   577  
   578  			return err
   579  		}
   580  
   581  		doneOnce = true
   582  	}
   583  
   584  	if enable {
   585  		s.defaultForwardingEnabled[protocol] = struct{}{}
   586  	} else {
   587  		delete(s.defaultForwardingEnabled, protocol)
   588  	}
   589  
   590  	return nil
   591  }
   592  
   593  // AddMulticastRoute adds a multicast route to be used for the specified
   594  // addresses and protocol.
   595  func (s *Stack) AddMulticastRoute(protocol tcpip.NetworkProtocolNumber, addresses UnicastSourceAndMulticastDestination, route MulticastRoute) tcpip.Error {
   596  	netProto, ok := s.networkProtocols[protocol]
   597  	if !ok {
   598  		return &tcpip.ErrUnknownProtocol{}
   599  	}
   600  
   601  	forwardingNetProto, ok := netProto.(MulticastForwardingNetworkProtocol)
   602  	if !ok {
   603  		return &tcpip.ErrNotSupported{}
   604  	}
   605  
   606  	return forwardingNetProto.AddMulticastRoute(addresses, route)
   607  }
   608  
   609  // RemoveMulticastRoute removes a multicast route that matches the specified
   610  // addresses and protocol.
   611  func (s *Stack) RemoveMulticastRoute(protocol tcpip.NetworkProtocolNumber, addresses UnicastSourceAndMulticastDestination) tcpip.Error {
   612  	netProto, ok := s.networkProtocols[protocol]
   613  	if !ok {
   614  		return &tcpip.ErrUnknownProtocol{}
   615  	}
   616  
   617  	forwardingNetProto, ok := netProto.(MulticastForwardingNetworkProtocol)
   618  	if !ok {
   619  		return &tcpip.ErrNotSupported{}
   620  	}
   621  
   622  	return forwardingNetProto.RemoveMulticastRoute(addresses)
   623  }
   624  
   625  // MulticastRouteLastUsedTime returns a monotonic timestamp that represents the
   626  // last time that the route that matches the provided addresses and protocol
   627  // was used or updated.
   628  func (s *Stack) MulticastRouteLastUsedTime(protocol tcpip.NetworkProtocolNumber, addresses UnicastSourceAndMulticastDestination) (tcpip.MonotonicTime, tcpip.Error) {
   629  	netProto, ok := s.networkProtocols[protocol]
   630  	if !ok {
   631  		return tcpip.MonotonicTime{}, &tcpip.ErrUnknownProtocol{}
   632  	}
   633  
   634  	forwardingNetProto, ok := netProto.(MulticastForwardingNetworkProtocol)
   635  	if !ok {
   636  		return tcpip.MonotonicTime{}, &tcpip.ErrNotSupported{}
   637  	}
   638  
   639  	return forwardingNetProto.MulticastRouteLastUsedTime(addresses)
   640  }
   641  
   642  // EnableMulticastForwardingForProtocol enables multicast forwarding for the
   643  // provided protocol.
   644  //
   645  // Returns true if forwarding was already enabled on the protocol.
   646  // Additionally, returns an error if:
   647  //
   648  //   - The protocol is not found.
   649  //   - The protocol doesn't support multicast forwarding.
   650  //   - The multicast forwarding event dispatcher is nil.
   651  //
   652  // If successful, future multicast forwarding events will be sent to the
   653  // provided event dispatcher.
   654  func (s *Stack) EnableMulticastForwardingForProtocol(protocol tcpip.NetworkProtocolNumber, disp MulticastForwardingEventDispatcher) (bool, tcpip.Error) {
   655  	netProto, ok := s.networkProtocols[protocol]
   656  	if !ok {
   657  		return false, &tcpip.ErrUnknownProtocol{}
   658  	}
   659  
   660  	forwardingNetProto, ok := netProto.(MulticastForwardingNetworkProtocol)
   661  	if !ok {
   662  		return false, &tcpip.ErrNotSupported{}
   663  	}
   664  
   665  	return forwardingNetProto.EnableMulticastForwarding(disp)
   666  }
   667  
   668  // DisableMulticastForwardingForProtocol disables multicast forwarding for the
   669  // provided protocol.
   670  //
   671  // Returns an error if the provided protocol is not found or if it does not
   672  // support multicast forwarding.
   673  func (s *Stack) DisableMulticastForwardingForProtocol(protocol tcpip.NetworkProtocolNumber) tcpip.Error {
   674  	netProto, ok := s.networkProtocols[protocol]
   675  	if !ok {
   676  		return &tcpip.ErrUnknownProtocol{}
   677  	}
   678  
   679  	forwardingNetProto, ok := netProto.(MulticastForwardingNetworkProtocol)
   680  	if !ok {
   681  		return &tcpip.ErrNotSupported{}
   682  	}
   683  
   684  	forwardingNetProto.DisableMulticastForwarding()
   685  	return nil
   686  }
   687  
   688  // SetNICMulticastForwarding enables or disables multicast packet forwarding on
   689  // the specified NIC for the passed protocol.
   690  //
   691  // Returns the previous configuration on the NIC.
   692  //
   693  // TODO(https://gvisor.dev/issue/7338): Implement support for multicast
   694  // forwarding. Currently, setting this value is a no-op and is not ready for
   695  // use.
   696  func (s *Stack) SetNICMulticastForwarding(id tcpip.NICID, protocol tcpip.NetworkProtocolNumber, enable bool) (bool, tcpip.Error) {
   697  	s.mu.RLock()
   698  	defer s.mu.RUnlock()
   699  
   700  	nic, ok := s.nics[id]
   701  	if !ok {
   702  		return false, &tcpip.ErrUnknownNICID{}
   703  	}
   704  
   705  	return nic.setMulticastForwarding(protocol, enable)
   706  }
   707  
   708  // NICMulticastForwarding returns the multicast forwarding configuration for
   709  // the specified NIC.
   710  func (s *Stack) NICMulticastForwarding(id tcpip.NICID, protocol tcpip.NetworkProtocolNumber) (bool, tcpip.Error) {
   711  	s.mu.RLock()
   712  	defer s.mu.RUnlock()
   713  
   714  	nic, ok := s.nics[id]
   715  	if !ok {
   716  		return false, &tcpip.ErrUnknownNICID{}
   717  	}
   718  
   719  	return nic.multicastForwarding(protocol)
   720  }
   721  
   722  // PortRange returns the UDP and TCP inclusive range of ephemeral ports used in
   723  // both IPv4 and IPv6.
   724  func (s *Stack) PortRange() (uint16, uint16) {
   725  	return s.PortManager.PortRange()
   726  }
   727  
   728  // SetPortRange sets the UDP and TCP IPv4 and IPv6 ephemeral port range
   729  // (inclusive).
   730  func (s *Stack) SetPortRange(start uint16, end uint16) tcpip.Error {
   731  	return s.PortManager.SetPortRange(start, end)
   732  }
   733  
   734  // SetRouteTable assigns the route table to be used by this stack. It
   735  // specifies which NIC to use for given destination address ranges.
   736  //
   737  // This method takes ownership of the table.
   738  func (s *Stack) SetRouteTable(table []tcpip.Route) {
   739  	s.routeMu.Lock()
   740  	defer s.routeMu.Unlock()
   741  	s.routeTable = table
   742  }
   743  
   744  // GetRouteTable returns the route table which is currently in use.
   745  func (s *Stack) GetRouteTable() []tcpip.Route {
   746  	s.routeMu.RLock()
   747  	defer s.routeMu.RUnlock()
   748  	return append([]tcpip.Route(nil), s.routeTable...)
   749  }
   750  
   751  // AddRoute appends a route to the route table.
   752  func (s *Stack) AddRoute(route tcpip.Route) {
   753  	s.routeMu.Lock()
   754  	defer s.routeMu.Unlock()
   755  	s.routeTable = append(s.routeTable, route)
   756  }
   757  
   758  // RemoveRoutes removes matching routes from the route table.
   759  func (s *Stack) RemoveRoutes(match func(tcpip.Route) bool) {
   760  	s.routeMu.Lock()
   761  	defer s.routeMu.Unlock()
   762  
   763  	var filteredRoutes []tcpip.Route
   764  	for _, route := range s.routeTable {
   765  		if !match(route) {
   766  			filteredRoutes = append(filteredRoutes, route)
   767  		}
   768  	}
   769  	s.routeTable = filteredRoutes
   770  }
   771  
   772  // NewEndpoint creates a new transport layer endpoint of the given protocol.
   773  func (s *Stack) NewEndpoint(transport tcpip.TransportProtocolNumber, network tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue) (tcpip.Endpoint, tcpip.Error) {
   774  	t, ok := s.transportProtocols[transport]
   775  	if !ok {
   776  		return nil, &tcpip.ErrUnknownProtocol{}
   777  	}
   778  
   779  	return t.proto.NewEndpoint(network, waiterQueue)
   780  }
   781  
   782  // NewRawEndpoint creates a new raw transport layer endpoint of the given
   783  // protocol. Raw endpoints receive all traffic for a given protocol regardless
   784  // of address.
   785  func (s *Stack) NewRawEndpoint(transport tcpip.TransportProtocolNumber, network tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue, associated bool) (tcpip.Endpoint, tcpip.Error) {
   786  	if s.rawFactory == nil {
   787  		netRawMissingLogger.Infof("A process tried to create a raw socket, but --net-raw was not specified. Should runsc be run with --net-raw?")
   788  		return nil, &tcpip.ErrNotPermitted{}
   789  	}
   790  
   791  	if !associated {
   792  		return s.rawFactory.NewUnassociatedEndpoint(s, network, transport, waiterQueue)
   793  	}
   794  
   795  	t, ok := s.transportProtocols[transport]
   796  	if !ok {
   797  		return nil, &tcpip.ErrUnknownProtocol{}
   798  	}
   799  
   800  	return t.proto.NewRawEndpoint(network, waiterQueue)
   801  }
   802  
   803  // NewPacketEndpoint creates a new packet endpoint listening for the given
   804  // netProto.
   805  func (s *Stack) NewPacketEndpoint(cooked bool, netProto tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue) (tcpip.Endpoint, tcpip.Error) {
   806  	if s.rawFactory == nil {
   807  		return nil, &tcpip.ErrNotPermitted{}
   808  	}
   809  
   810  	return s.rawFactory.NewPacketEndpoint(s, cooked, netProto, waiterQueue)
   811  }
   812  
   813  // NICContext is an opaque pointer used to store client-supplied NIC metadata.
   814  type NICContext any
   815  
   816  // NICOptions specifies the configuration of a NIC as it is being created.
   817  // The zero value creates an enabled, unnamed NIC.
   818  type NICOptions struct {
   819  	// Name specifies the name of the NIC.
   820  	Name string
   821  
   822  	// Disabled specifies whether to avoid calling Attach on the passed
   823  	// LinkEndpoint.
   824  	Disabled bool
   825  
   826  	// Context specifies user-defined data that will be returned in stack.NICInfo
   827  	// for the NIC. Clients of this library can use it to add metadata that
   828  	// should be tracked alongside a NIC, to avoid having to keep a
   829  	// map[tcpip.NICID]metadata mirroring stack.Stack's nic map.
   830  	Context NICContext
   831  
   832  	// QDisc is the queue discipline to use for this NIC.
   833  	QDisc QueueingDiscipline
   834  
   835  	// DeliverLinkPackets specifies whether the NIC is responsible for
   836  	// delivering raw packets to packet sockets.
   837  	DeliverLinkPackets bool
   838  }
   839  
   840  // CreateNICWithOptions creates a NIC with the provided id, LinkEndpoint, and
   841  // NICOptions. See the documentation on type NICOptions for details on how
   842  // NICs can be configured.
   843  //
   844  // LinkEndpoint.Attach will be called to bind ep with a NetworkDispatcher.
   845  func (s *Stack) CreateNICWithOptions(id tcpip.NICID, ep LinkEndpoint, opts NICOptions) tcpip.Error {
   846  	s.mu.Lock()
   847  	defer s.mu.Unlock()
   848  
   849  	if id == 0 {
   850  		return &tcpip.ErrInvalidNICID{}
   851  	}
   852  	// Make sure id is unique.
   853  	if _, ok := s.nics[id]; ok {
   854  		return &tcpip.ErrDuplicateNICID{}
   855  	}
   856  
   857  	// Make sure name is unique, unless unnamed.
   858  	if opts.Name != "" {
   859  		for _, n := range s.nics {
   860  			if n.Name() == opts.Name {
   861  				return &tcpip.ErrDuplicateNICID{}
   862  			}
   863  		}
   864  	}
   865  
   866  	n := newNIC(s, id, ep, opts)
   867  	for proto := range s.defaultForwardingEnabled {
   868  		if _, err := n.setForwarding(proto, true); err != nil {
   869  			panic(fmt.Sprintf("newNIC(%d, ...).setForwarding(%d, true): %s", id, proto, err))
   870  		}
   871  	}
   872  	s.nics[id] = n
   873  	if !opts.Disabled {
   874  		return n.enable()
   875  	}
   876  
   877  	return nil
   878  }
   879  
   880  // CreateNIC creates a NIC with the provided id and LinkEndpoint and calls
   881  // LinkEndpoint.Attach to bind ep with a NetworkDispatcher.
   882  func (s *Stack) CreateNIC(id tcpip.NICID, ep LinkEndpoint) tcpip.Error {
   883  	return s.CreateNICWithOptions(id, ep, NICOptions{})
   884  }
   885  
   886  // GetLinkEndpointByName gets the link endpoint specified by name.
   887  func (s *Stack) GetLinkEndpointByName(name string) LinkEndpoint {
   888  	s.mu.RLock()
   889  	defer s.mu.RUnlock()
   890  	for _, nic := range s.nics {
   891  		if nic.Name() == name {
   892  			linkEP, ok := nic.NetworkLinkEndpoint.(LinkEndpoint)
   893  			if !ok {
   894  				panic(fmt.Sprintf("unexpected NetworkLinkEndpoint(%#v) is not a LinkEndpoint", nic.NetworkLinkEndpoint))
   895  			}
   896  			return linkEP
   897  		}
   898  	}
   899  	return nil
   900  }
   901  
   902  // EnableNIC enables the given NIC so that the link-layer endpoint can start
   903  // delivering packets to it.
   904  func (s *Stack) EnableNIC(id tcpip.NICID) tcpip.Error {
   905  	s.mu.RLock()
   906  	defer s.mu.RUnlock()
   907  
   908  	nic, ok := s.nics[id]
   909  	if !ok {
   910  		return &tcpip.ErrUnknownNICID{}
   911  	}
   912  
   913  	return nic.enable()
   914  }
   915  
   916  // DisableNIC disables the given NIC.
   917  func (s *Stack) DisableNIC(id tcpip.NICID) tcpip.Error {
   918  	s.mu.RLock()
   919  	defer s.mu.RUnlock()
   920  
   921  	nic, ok := s.nics[id]
   922  	if !ok {
   923  		return &tcpip.ErrUnknownNICID{}
   924  	}
   925  
   926  	nic.disable()
   927  	return nil
   928  }
   929  
   930  // CheckNIC checks if a NIC is usable.
   931  func (s *Stack) CheckNIC(id tcpip.NICID) bool {
   932  	s.mu.RLock()
   933  	defer s.mu.RUnlock()
   934  
   935  	nic, ok := s.nics[id]
   936  	if !ok {
   937  		return false
   938  	}
   939  
   940  	return nic.Enabled()
   941  }
   942  
   943  // RemoveNIC removes NIC and all related routes from the network stack.
   944  func (s *Stack) RemoveNIC(id tcpip.NICID) tcpip.Error {
   945  	s.mu.Lock()
   946  	defer s.mu.Unlock()
   947  
   948  	return s.removeNICLocked(id)
   949  }
   950  
   951  // removeNICLocked removes NIC and all related routes from the network stack.
   952  //
   953  // +checklocks:s.mu
   954  func (s *Stack) removeNICLocked(id tcpip.NICID) tcpip.Error {
   955  	nic, ok := s.nics[id]
   956  	if !ok {
   957  		return &tcpip.ErrUnknownNICID{}
   958  	}
   959  	delete(s.nics, id)
   960  
   961  	// Remove routes in-place. n tracks the number of routes written.
   962  	s.routeMu.Lock()
   963  	n := 0
   964  	for _, r := range s.routeTable {
   965  		if r.NIC != id {
   966  			// Keep this route.
   967  			s.routeTable[n] = r
   968  			n++
   969  		}
   970  	}
   971  	clear(s.routeTable[n:])
   972  	s.routeTable = s.routeTable[:n]
   973  	s.routeMu.Unlock()
   974  
   975  	return nic.remove()
   976  }
   977  
   978  // NICInfo captures the name and addresses assigned to a NIC.
   979  type NICInfo struct {
   980  	Name              string
   981  	LinkAddress       tcpip.LinkAddress
   982  	ProtocolAddresses []tcpip.ProtocolAddress
   983  
   984  	// Flags indicate the state of the NIC.
   985  	Flags NICStateFlags
   986  
   987  	// MTU is the maximum transmission unit.
   988  	MTU uint32
   989  
   990  	Stats tcpip.NICStats
   991  
   992  	// NetworkStats holds the stats of each NetworkEndpoint bound to the NIC.
   993  	NetworkStats map[tcpip.NetworkProtocolNumber]NetworkEndpointStats
   994  
   995  	// Context is user-supplied data optionally supplied in CreateNICWithOptions.
   996  	// See type NICOptions for more details.
   997  	Context NICContext
   998  
   999  	// ARPHardwareType holds the ARP Hardware type of the NIC. This is the
  1000  	// value sent in haType field of an ARP Request sent by this NIC and the
  1001  	// value expected in the haType field of an ARP response.
  1002  	ARPHardwareType header.ARPHardwareType
  1003  
  1004  	// Forwarding holds the forwarding status for each network endpoint that
  1005  	// supports forwarding.
  1006  	Forwarding map[tcpip.NetworkProtocolNumber]bool
  1007  
  1008  	// MulticastForwarding holds the forwarding status for each network endpoint
  1009  	// that supports multicast forwarding.
  1010  	MulticastForwarding map[tcpip.NetworkProtocolNumber]bool
  1011  }
  1012  
  1013  // HasNIC returns true if the NICID is defined in the stack.
  1014  func (s *Stack) HasNIC(id tcpip.NICID) bool {
  1015  	s.mu.RLock()
  1016  	_, ok := s.nics[id]
  1017  	s.mu.RUnlock()
  1018  	return ok
  1019  }
  1020  
  1021  // NICInfo returns a map of NICIDs to their associated information.
  1022  func (s *Stack) NICInfo() map[tcpip.NICID]NICInfo {
  1023  	s.mu.RLock()
  1024  	defer s.mu.RUnlock()
  1025  
  1026  	type forwardingFn func(tcpip.NetworkProtocolNumber) (bool, tcpip.Error)
  1027  	forwardingValue := func(forwardingFn forwardingFn, proto tcpip.NetworkProtocolNumber, nicID tcpip.NICID, fnName string) (forward bool, ok bool) {
  1028  		switch forwarding, err := forwardingFn(proto); err.(type) {
  1029  		case nil:
  1030  			return forwarding, true
  1031  		case *tcpip.ErrUnknownProtocol:
  1032  			panic(fmt.Sprintf("expected network protocol %d to be available on NIC %d", proto, nicID))
  1033  		case *tcpip.ErrNotSupported:
  1034  			// Not all network protocols support forwarding.
  1035  		default:
  1036  			panic(fmt.Sprintf("nic(id=%d).%s(%d): %s", nicID, fnName, proto, err))
  1037  		}
  1038  		return false, false
  1039  	}
  1040  
  1041  	nics := make(map[tcpip.NICID]NICInfo)
  1042  	for id, nic := range s.nics {
  1043  		flags := NICStateFlags{
  1044  			Up:          true, // Netstack interfaces are always up.
  1045  			Running:     nic.Enabled(),
  1046  			Promiscuous: nic.Promiscuous(),
  1047  			Loopback:    nic.IsLoopback(),
  1048  		}
  1049  
  1050  		netStats := make(map[tcpip.NetworkProtocolNumber]NetworkEndpointStats)
  1051  		for proto, netEP := range nic.networkEndpoints {
  1052  			netStats[proto] = netEP.Stats()
  1053  		}
  1054  
  1055  		info := NICInfo{
  1056  			Name:                nic.name,
  1057  			LinkAddress:         nic.NetworkLinkEndpoint.LinkAddress(),
  1058  			ProtocolAddresses:   nic.primaryAddresses(),
  1059  			Flags:               flags,
  1060  			MTU:                 nic.NetworkLinkEndpoint.MTU(),
  1061  			Stats:               nic.stats.local,
  1062  			NetworkStats:        netStats,
  1063  			Context:             nic.context,
  1064  			ARPHardwareType:     nic.NetworkLinkEndpoint.ARPHardwareType(),
  1065  			Forwarding:          make(map[tcpip.NetworkProtocolNumber]bool),
  1066  			MulticastForwarding: make(map[tcpip.NetworkProtocolNumber]bool),
  1067  		}
  1068  
  1069  		for proto := range s.networkProtocols {
  1070  			if forwarding, ok := forwardingValue(nic.forwarding, proto, id, "forwarding"); ok {
  1071  				info.Forwarding[proto] = forwarding
  1072  			}
  1073  
  1074  			if multicastForwarding, ok := forwardingValue(nic.multicastForwarding, proto, id, "multicastForwarding"); ok {
  1075  				info.MulticastForwarding[proto] = multicastForwarding
  1076  			}
  1077  		}
  1078  
  1079  		nics[id] = info
  1080  	}
  1081  	return nics
  1082  }
  1083  
  1084  // NICStateFlags holds information about the state of an NIC.
  1085  type NICStateFlags struct {
  1086  	// Up indicates whether the interface is running.
  1087  	Up bool
  1088  
  1089  	// Running indicates whether resources are allocated.
  1090  	Running bool
  1091  
  1092  	// Promiscuous indicates whether the interface is in promiscuous mode.
  1093  	Promiscuous bool
  1094  
  1095  	// Loopback indicates whether the interface is a loopback.
  1096  	Loopback bool
  1097  }
  1098  
  1099  // AddProtocolAddress adds an address to the specified NIC, possibly with extra
  1100  // properties.
  1101  func (s *Stack) AddProtocolAddress(id tcpip.NICID, protocolAddress tcpip.ProtocolAddress, properties AddressProperties) tcpip.Error {
  1102  	s.mu.RLock()
  1103  	defer s.mu.RUnlock()
  1104  
  1105  	nic, ok := s.nics[id]
  1106  	if !ok {
  1107  		return &tcpip.ErrUnknownNICID{}
  1108  	}
  1109  
  1110  	return nic.addAddress(protocolAddress, properties)
  1111  }
  1112  
  1113  // RemoveAddress removes an existing network-layer address from the specified
  1114  // NIC.
  1115  func (s *Stack) RemoveAddress(id tcpip.NICID, addr tcpip.Address) tcpip.Error {
  1116  	s.mu.RLock()
  1117  	defer s.mu.RUnlock()
  1118  
  1119  	if nic, ok := s.nics[id]; ok {
  1120  		return nic.removeAddress(addr)
  1121  	}
  1122  
  1123  	return &tcpip.ErrUnknownNICID{}
  1124  }
  1125  
  1126  // SetAddressLifetimes sets informational preferred and valid lifetimes, and
  1127  // whether the address should be preferred or deprecated.
  1128  func (s *Stack) SetAddressLifetimes(id tcpip.NICID, addr tcpip.Address, lifetimes AddressLifetimes) tcpip.Error {
  1129  	s.mu.RLock()
  1130  	defer s.mu.RUnlock()
  1131  
  1132  	if nic, ok := s.nics[id]; ok {
  1133  		return nic.setAddressLifetimes(addr, lifetimes)
  1134  	}
  1135  
  1136  	return &tcpip.ErrUnknownNICID{}
  1137  }
  1138  
  1139  // AllAddresses returns a map of NICIDs to their protocol addresses (primary
  1140  // and non-primary).
  1141  func (s *Stack) AllAddresses() map[tcpip.NICID][]tcpip.ProtocolAddress {
  1142  	s.mu.RLock()
  1143  	defer s.mu.RUnlock()
  1144  
  1145  	nics := make(map[tcpip.NICID][]tcpip.ProtocolAddress)
  1146  	for id, nic := range s.nics {
  1147  		nics[id] = nic.allPermanentAddresses()
  1148  	}
  1149  	return nics
  1150  }
  1151  
  1152  // GetMainNICAddress returns the first non-deprecated primary address and prefix
  1153  // for the given NIC and protocol. If no non-deprecated primary addresses exist,
  1154  // a deprecated address will be returned. If no deprecated addresses exist, the
  1155  // zero value will be returned.
  1156  func (s *Stack) GetMainNICAddress(id tcpip.NICID, protocol tcpip.NetworkProtocolNumber) (tcpip.AddressWithPrefix, tcpip.Error) {
  1157  	s.mu.RLock()
  1158  	defer s.mu.RUnlock()
  1159  
  1160  	nic, ok := s.nics[id]
  1161  	if !ok {
  1162  		return tcpip.AddressWithPrefix{}, &tcpip.ErrUnknownNICID{}
  1163  	}
  1164  
  1165  	return nic.PrimaryAddress(protocol)
  1166  }
  1167  
  1168  func (s *Stack) getAddressEP(nic *nic, localAddr, remoteAddr, srcHint tcpip.Address, netProto tcpip.NetworkProtocolNumber) AssignableAddressEndpoint {
  1169  	if localAddr.BitLen() == 0 {
  1170  		return nic.primaryEndpoint(netProto, remoteAddr, srcHint)
  1171  	}
  1172  	return nic.findEndpoint(netProto, localAddr, CanBePrimaryEndpoint)
  1173  }
  1174  
  1175  // NewRouteForMulticast returns a Route that may be used to forward multicast
  1176  // packets.
  1177  //
  1178  // Returns nil if validation fails.
  1179  func (s *Stack) NewRouteForMulticast(nicID tcpip.NICID, remoteAddr tcpip.Address, netProto tcpip.NetworkProtocolNumber) *Route {
  1180  	s.mu.RLock()
  1181  	defer s.mu.RUnlock()
  1182  
  1183  	nic, ok := s.nics[nicID]
  1184  	if !ok || !nic.Enabled() {
  1185  		return nil
  1186  	}
  1187  
  1188  	if addressEndpoint := s.getAddressEP(nic, tcpip.Address{} /* localAddr */, remoteAddr, tcpip.Address{} /* srcHint */, netProto); addressEndpoint != nil {
  1189  		return constructAndValidateRoute(netProto, addressEndpoint, nic, nic, tcpip.Address{} /* gateway */, tcpip.Address{} /* localAddr */, remoteAddr, s.handleLocal, false /* multicastLoop */)
  1190  	}
  1191  	return nil
  1192  }
  1193  
  1194  // findLocalRouteFromNICRLocked is like findLocalRouteRLocked but finds a route
  1195  // from the specified NIC.
  1196  //
  1197  // +checklocksread:s.mu
  1198  func (s *Stack) findLocalRouteFromNICRLocked(localAddressNIC *nic, localAddr, remoteAddr tcpip.Address, netProto tcpip.NetworkProtocolNumber) *Route {
  1199  	localAddressEndpoint := localAddressNIC.getAddressOrCreateTempInner(netProto, localAddr, false /* createTemp */, NeverPrimaryEndpoint)
  1200  	if localAddressEndpoint == nil {
  1201  		return nil
  1202  	}
  1203  
  1204  	var outgoingNIC *nic
  1205  	// Prefer a local route to the same interface as the local address.
  1206  	if localAddressNIC.hasAddress(netProto, remoteAddr) {
  1207  		outgoingNIC = localAddressNIC
  1208  	}
  1209  
  1210  	// If the remote address isn't owned by the local address's NIC, check all
  1211  	// NICs.
  1212  	if outgoingNIC == nil {
  1213  		for _, nic := range s.nics {
  1214  			if nic.hasAddress(netProto, remoteAddr) {
  1215  				outgoingNIC = nic
  1216  				break
  1217  			}
  1218  		}
  1219  	}
  1220  
  1221  	// If the remote address is not owned by the stack, we can't return a local
  1222  	// route.
  1223  	if outgoingNIC == nil {
  1224  		localAddressEndpoint.DecRef()
  1225  		return nil
  1226  	}
  1227  
  1228  	r := makeLocalRoute(
  1229  		netProto,
  1230  		localAddr,
  1231  		remoteAddr,
  1232  		outgoingNIC,
  1233  		localAddressNIC,
  1234  		localAddressEndpoint,
  1235  	)
  1236  
  1237  	if r.IsOutboundBroadcast() {
  1238  		r.Release()
  1239  		return nil
  1240  	}
  1241  
  1242  	return r
  1243  }
  1244  
  1245  // findLocalRouteRLocked returns a local route.
  1246  //
  1247  // A local route is a route to some remote address which the stack owns. That
  1248  // is, a local route is a route where packets never have to leave the stack.
  1249  //
  1250  // +checklocksread:s.mu
  1251  func (s *Stack) findLocalRouteRLocked(localAddressNICID tcpip.NICID, localAddr, remoteAddr tcpip.Address, netProto tcpip.NetworkProtocolNumber) *Route {
  1252  	if localAddr.BitLen() == 0 {
  1253  		localAddr = remoteAddr
  1254  	}
  1255  
  1256  	if localAddressNICID == 0 {
  1257  		for _, localAddressNIC := range s.nics {
  1258  			if r := s.findLocalRouteFromNICRLocked(localAddressNIC, localAddr, remoteAddr, netProto); r != nil {
  1259  				return r
  1260  			}
  1261  		}
  1262  
  1263  		return nil
  1264  	}
  1265  
  1266  	if localAddressNIC, ok := s.nics[localAddressNICID]; ok {
  1267  		return s.findLocalRouteFromNICRLocked(localAddressNIC, localAddr, remoteAddr, netProto)
  1268  	}
  1269  
  1270  	return nil
  1271  }
  1272  
  1273  // HandleLocal returns true if non-loopback interfaces are allowed to loop packets.
  1274  func (s *Stack) HandleLocal() bool {
  1275  	return s.handleLocal
  1276  }
  1277  
  1278  func isNICForwarding(nic *nic, proto tcpip.NetworkProtocolNumber) bool {
  1279  	switch forwarding, err := nic.forwarding(proto); err.(type) {
  1280  	case nil:
  1281  		return forwarding
  1282  	case *tcpip.ErrUnknownProtocol:
  1283  		panic(fmt.Sprintf("expected network protocol %d to be available on NIC %d", proto, nic.ID()))
  1284  	case *tcpip.ErrNotSupported:
  1285  		// Not all network protocols support forwarding.
  1286  		return false
  1287  	default:
  1288  		panic(fmt.Sprintf("nic(id=%d).forwarding(%d): %s", nic.ID(), proto, err))
  1289  	}
  1290  }
  1291  
  1292  // findRouteWithLocalAddrFromAnyInterfaceRLocked returns a route to the given
  1293  // destination address, leaving through the given NIC.
  1294  //
  1295  // Rather than preferring to find a route that uses a local address assigned to
  1296  // the outgoing interface, it finds any NIC that holds a matching local address
  1297  // endpoint.
  1298  //
  1299  // +checklocksread:s.mu
  1300  func (s *Stack) findRouteWithLocalAddrFromAnyInterfaceRLocked(outgoingNIC *nic, localAddr, remoteAddr, srcHint, gateway tcpip.Address, netProto tcpip.NetworkProtocolNumber, multicastLoop bool) *Route {
  1301  	for _, aNIC := range s.nics {
  1302  		addressEndpoint := s.getAddressEP(aNIC, localAddr, remoteAddr, srcHint, netProto)
  1303  		if addressEndpoint == nil {
  1304  			continue
  1305  		}
  1306  
  1307  		if r := constructAndValidateRoute(netProto, addressEndpoint, aNIC /* localAddressNIC */, outgoingNIC, gateway, localAddr, remoteAddr, s.handleLocal, multicastLoop); r != nil {
  1308  			return r
  1309  		}
  1310  	}
  1311  	return nil
  1312  }
  1313  
  1314  // FindRoute creates a route to the given destination address, leaving through
  1315  // the given NIC and local address (if provided).
  1316  //
  1317  // If a NIC is not specified, the returned route will leave through the same
  1318  // NIC as the NIC that has the local address assigned when forwarding is
  1319  // disabled. If forwarding is enabled and the NIC is unspecified, the route may
  1320  // leave through any interface unless the route is link-local.
  1321  //
  1322  // If no local address is provided, the stack will select a local address. If no
  1323  // remote address is provided, the stack will use a remote address equal to the
  1324  // local address.
  1325  func (s *Stack) FindRoute(id tcpip.NICID, localAddr, remoteAddr tcpip.Address, netProto tcpip.NetworkProtocolNumber, multicastLoop bool) (*Route, tcpip.Error) {
  1326  	s.mu.RLock()
  1327  	defer s.mu.RUnlock()
  1328  
  1329  	// Reject attempts to use unsupported protocols.
  1330  	if !s.CheckNetworkProtocol(netProto) {
  1331  		return nil, &tcpip.ErrUnknownProtocol{}
  1332  	}
  1333  
  1334  	isLinkLocal := header.IsV6LinkLocalUnicastAddress(remoteAddr) || header.IsV6LinkLocalMulticastAddress(remoteAddr)
  1335  	isLocalBroadcast := remoteAddr == header.IPv4Broadcast
  1336  	isMulticast := header.IsV4MulticastAddress(remoteAddr) || header.IsV6MulticastAddress(remoteAddr)
  1337  	isLoopback := header.IsV4LoopbackAddress(remoteAddr) || header.IsV6LoopbackAddress(remoteAddr)
  1338  	needRoute := !(isLocalBroadcast || isMulticast || isLinkLocal || isLoopback)
  1339  
  1340  	if s.handleLocal && !isMulticast && !isLocalBroadcast {
  1341  		if r := s.findLocalRouteRLocked(id, localAddr, remoteAddr, netProto); r != nil {
  1342  			return r, nil
  1343  		}
  1344  	}
  1345  
  1346  	// If the interface is specified and we do not need a route, return a route
  1347  	// through the interface if the interface is valid and enabled.
  1348  	if id != 0 && !needRoute {
  1349  		if nic, ok := s.nics[id]; ok && nic.Enabled() {
  1350  			if addressEndpoint := s.getAddressEP(nic, localAddr, remoteAddr, tcpip.Address{} /* srcHint */, netProto); addressEndpoint != nil {
  1351  				return makeRoute(
  1352  					netProto,
  1353  					tcpip.Address{}, /* gateway */
  1354  					localAddr,
  1355  					remoteAddr,
  1356  					nic, /* outboundNIC */
  1357  					nic, /* localAddressNIC*/
  1358  					addressEndpoint,
  1359  					s.handleLocal,
  1360  					multicastLoop,
  1361  				), nil
  1362  			}
  1363  		}
  1364  
  1365  		if isLoopback {
  1366  			return nil, &tcpip.ErrBadLocalAddress{}
  1367  		}
  1368  		return nil, &tcpip.ErrNetworkUnreachable{}
  1369  	}
  1370  
  1371  	onlyGlobalAddresses := !header.IsV6LinkLocalUnicastAddress(localAddr) && !isLinkLocal
  1372  
  1373  	// Find a route to the remote with the route table.
  1374  	var chosenRoute tcpip.Route
  1375  	if r := func() *Route {
  1376  		s.routeMu.RLock()
  1377  		defer s.routeMu.RUnlock()
  1378  
  1379  		for _, route := range s.routeTable {
  1380  			if remoteAddr.BitLen() != 0 && !route.Destination.Contains(remoteAddr) {
  1381  				continue
  1382  			}
  1383  
  1384  			nic, ok := s.nics[route.NIC]
  1385  			if !ok || !nic.Enabled() {
  1386  				continue
  1387  			}
  1388  
  1389  			if id == 0 || id == route.NIC {
  1390  				if addressEndpoint := s.getAddressEP(nic, localAddr, remoteAddr, route.SourceHint, netProto); addressEndpoint != nil {
  1391  					var gateway tcpip.Address
  1392  					if needRoute {
  1393  						gateway = route.Gateway
  1394  					}
  1395  					r := constructAndValidateRoute(netProto, addressEndpoint, nic /* outgoingNIC */, nic /* outgoingNIC */, gateway, localAddr, remoteAddr, s.handleLocal, multicastLoop)
  1396  					if r == nil {
  1397  						panic(fmt.Sprintf("non-forwarding route validation failed with route table entry = %#v, id = %d, localAddr = %s, remoteAddr = %s", route, id, localAddr, remoteAddr))
  1398  					}
  1399  					return r
  1400  				}
  1401  			}
  1402  
  1403  			// If the stack has forwarding enabled, we haven't found a valid route to
  1404  			// the remote address yet, and we are routing locally generated traffic,
  1405  			// keep track of the first valid route. We keep iterating because we
  1406  			// prefer routes that let us use a local address that is assigned to the
  1407  			// outgoing interface. There is no requirement to do this from any RFC
  1408  			// but simply a choice made to better follow a strong host model which
  1409  			// the netstack follows at the time of writing.
  1410  			//
  1411  			// Note that for incoming traffic that we are forwarding (for which the
  1412  			// NIC and local address are unspecified), we do not keep iterating, as
  1413  			// there is no reason to prefer routes that let us use a local address
  1414  			// when routing forwarded (as opposed to locally-generated) traffic.
  1415  			locallyGenerated := (id != 0 || localAddr != tcpip.Address{})
  1416  			if onlyGlobalAddresses && chosenRoute.Equal(tcpip.Route{}) && isNICForwarding(nic, netProto) {
  1417  				if locallyGenerated {
  1418  					chosenRoute = route
  1419  					continue
  1420  				}
  1421  				if r := s.findRouteWithLocalAddrFromAnyInterfaceRLocked(nic, localAddr, remoteAddr, route.SourceHint, route.Gateway, netProto, multicastLoop); r != nil {
  1422  					return r
  1423  				}
  1424  			}
  1425  		}
  1426  
  1427  		return nil
  1428  	}(); r != nil {
  1429  		return r, nil
  1430  	}
  1431  
  1432  	if !chosenRoute.Equal(tcpip.Route{}) {
  1433  		// At this point we know the stack has forwarding enabled since chosenRoute is
  1434  		// only set when forwarding is enabled.
  1435  		nic, ok := s.nics[chosenRoute.NIC]
  1436  		if !ok {
  1437  			// If the route's NIC was invalid, we should not have chosen the route.
  1438  			panic(fmt.Sprintf("chosen route must have a valid NIC with ID = %d", chosenRoute.NIC))
  1439  		}
  1440  
  1441  		var gateway tcpip.Address
  1442  		if needRoute {
  1443  			gateway = chosenRoute.Gateway
  1444  		}
  1445  
  1446  		// Use the specified NIC to get the local address endpoint.
  1447  		if id != 0 {
  1448  			if aNIC, ok := s.nics[id]; ok {
  1449  				if addressEndpoint := s.getAddressEP(aNIC, localAddr, remoteAddr, chosenRoute.SourceHint, netProto); addressEndpoint != nil {
  1450  					if r := constructAndValidateRoute(netProto, addressEndpoint, aNIC /* localAddressNIC */, nic /* outgoingNIC */, gateway, localAddr, remoteAddr, s.handleLocal, multicastLoop); r != nil {
  1451  						return r, nil
  1452  					}
  1453  				}
  1454  			}
  1455  
  1456  			// TODO(https://gvisor.dev/issues/8105): This should be ErrNetworkUnreachable.
  1457  			return nil, &tcpip.ErrHostUnreachable{}
  1458  		}
  1459  
  1460  		if id == 0 {
  1461  			// If an interface is not specified, try to find a NIC that holds the local
  1462  			// address endpoint to construct a route.
  1463  			if r := s.findRouteWithLocalAddrFromAnyInterfaceRLocked(nic, localAddr, remoteAddr, chosenRoute.SourceHint, gateway, netProto, multicastLoop); r != nil {
  1464  				return r, nil
  1465  			}
  1466  		}
  1467  	}
  1468  
  1469  	if needRoute {
  1470  		// TODO(https://gvisor.dev/issues/8105): This should be ErrNetworkUnreachable.
  1471  		return nil, &tcpip.ErrHostUnreachable{}
  1472  	}
  1473  	if header.IsV6LoopbackAddress(remoteAddr) {
  1474  		return nil, &tcpip.ErrBadLocalAddress{}
  1475  	}
  1476  	// TODO(https://gvisor.dev/issues/8105): This should be ErrNetworkUnreachable.
  1477  	return nil, &tcpip.ErrNetworkUnreachable{}
  1478  }
  1479  
  1480  // CheckNetworkProtocol checks if a given network protocol is enabled in the
  1481  // stack.
  1482  func (s *Stack) CheckNetworkProtocol(protocol tcpip.NetworkProtocolNumber) bool {
  1483  	_, ok := s.networkProtocols[protocol]
  1484  	return ok
  1485  }
  1486  
  1487  // CheckDuplicateAddress performs duplicate address detection for the address on
  1488  // the specified interface.
  1489  func (s *Stack) CheckDuplicateAddress(nicID tcpip.NICID, protocol tcpip.NetworkProtocolNumber, addr tcpip.Address, h DADCompletionHandler) (DADCheckAddressDisposition, tcpip.Error) {
  1490  	s.mu.RLock()
  1491  	nic, ok := s.nics[nicID]
  1492  	s.mu.RUnlock()
  1493  
  1494  	if !ok {
  1495  		return 0, &tcpip.ErrUnknownNICID{}
  1496  	}
  1497  
  1498  	return nic.checkDuplicateAddress(protocol, addr, h)
  1499  }
  1500  
  1501  // CheckLocalAddress determines if the given local address exists, and if it
  1502  // does, returns the id of the NIC it's bound to. Returns 0 if the address
  1503  // does not exist.
  1504  func (s *Stack) CheckLocalAddress(nicID tcpip.NICID, protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) tcpip.NICID {
  1505  	s.mu.RLock()
  1506  	defer s.mu.RUnlock()
  1507  
  1508  	// If a NIC is specified, use its NIC id.
  1509  	if nicID != 0 {
  1510  		nic, ok := s.nics[nicID]
  1511  		if !ok {
  1512  			return 0
  1513  		}
  1514  		// In IPv4, linux only checks the interface. If it matches, then it does
  1515  		// not bother with the address.
  1516  		// https://github.com/torvalds/linux/blob/15205c2829ca2cbb5ece5ceaafe1171a8470e62b/net/ipv4/igmp.c#L1829-L1837
  1517  		if protocol == header.IPv4ProtocolNumber {
  1518  			return nic.id
  1519  		}
  1520  		if nic.CheckLocalAddress(protocol, addr) {
  1521  			return nic.id
  1522  		}
  1523  		return 0
  1524  	}
  1525  
  1526  	// Go through all the NICs.
  1527  	for _, nic := range s.nics {
  1528  		if nic.CheckLocalAddress(protocol, addr) {
  1529  			return nic.id
  1530  		}
  1531  	}
  1532  
  1533  	return 0
  1534  }
  1535  
  1536  // SetPromiscuousMode enables or disables promiscuous mode in the given NIC.
  1537  func (s *Stack) SetPromiscuousMode(nicID tcpip.NICID, enable bool) tcpip.Error {
  1538  	s.mu.RLock()
  1539  	defer s.mu.RUnlock()
  1540  
  1541  	nic, ok := s.nics[nicID]
  1542  	if !ok {
  1543  		return &tcpip.ErrUnknownNICID{}
  1544  	}
  1545  
  1546  	nic.setPromiscuousMode(enable)
  1547  
  1548  	return nil
  1549  }
  1550  
  1551  // SetSpoofing enables or disables address spoofing in the given NIC, allowing
  1552  // endpoints to bind to any address in the NIC.
  1553  func (s *Stack) SetSpoofing(nicID tcpip.NICID, enable bool) tcpip.Error {
  1554  	s.mu.RLock()
  1555  	defer s.mu.RUnlock()
  1556  
  1557  	nic, ok := s.nics[nicID]
  1558  	if !ok {
  1559  		return &tcpip.ErrUnknownNICID{}
  1560  	}
  1561  
  1562  	nic.setSpoofing(enable)
  1563  
  1564  	return nil
  1565  }
  1566  
  1567  // LinkResolutionResult is the result of a link address resolution attempt.
  1568  type LinkResolutionResult struct {
  1569  	LinkAddress tcpip.LinkAddress
  1570  	Err         tcpip.Error
  1571  }
  1572  
  1573  // GetLinkAddress finds the link address corresponding to a network address.
  1574  //
  1575  // Returns ErrNotSupported if the stack is not configured with a link address
  1576  // resolver for the specified network protocol.
  1577  //
  1578  // Returns ErrWouldBlock if the link address is not readily available, along
  1579  // with a notification channel for the caller to block on. Triggers address
  1580  // resolution asynchronously.
  1581  //
  1582  // onResolve will be called either immediately, if resolution is not required,
  1583  // or when address resolution is complete, with the resolved link address and
  1584  // whether resolution succeeded.
  1585  //
  1586  // If specified, the local address must be an address local to the interface
  1587  // the neighbor cache belongs to. The local address is the source address of
  1588  // a packet prompting NUD/link address resolution.
  1589  func (s *Stack) GetLinkAddress(nicID tcpip.NICID, addr, localAddr tcpip.Address, protocol tcpip.NetworkProtocolNumber, onResolve func(LinkResolutionResult)) tcpip.Error {
  1590  	s.mu.RLock()
  1591  	nic, ok := s.nics[nicID]
  1592  	s.mu.RUnlock()
  1593  	if !ok {
  1594  		return &tcpip.ErrUnknownNICID{}
  1595  	}
  1596  
  1597  	return nic.getLinkAddress(addr, localAddr, protocol, onResolve)
  1598  }
  1599  
  1600  // Neighbors returns all IP to MAC address associations.
  1601  func (s *Stack) Neighbors(nicID tcpip.NICID, protocol tcpip.NetworkProtocolNumber) ([]NeighborEntry, tcpip.Error) {
  1602  	s.mu.RLock()
  1603  	nic, ok := s.nics[nicID]
  1604  	s.mu.RUnlock()
  1605  
  1606  	if !ok {
  1607  		return nil, &tcpip.ErrUnknownNICID{}
  1608  	}
  1609  
  1610  	return nic.neighbors(protocol)
  1611  }
  1612  
  1613  // AddStaticNeighbor statically associates an IP address to a MAC address.
  1614  func (s *Stack) AddStaticNeighbor(nicID tcpip.NICID, protocol tcpip.NetworkProtocolNumber, addr tcpip.Address, linkAddr tcpip.LinkAddress) tcpip.Error {
  1615  	s.mu.RLock()
  1616  	nic, ok := s.nics[nicID]
  1617  	s.mu.RUnlock()
  1618  
  1619  	if !ok {
  1620  		return &tcpip.ErrUnknownNICID{}
  1621  	}
  1622  
  1623  	return nic.addStaticNeighbor(addr, protocol, linkAddr)
  1624  }
  1625  
  1626  // RemoveNeighbor removes an IP to MAC address association previously created
  1627  // either automatically or by AddStaticNeighbor. Returns ErrBadAddress if there
  1628  // is no association with the provided address.
  1629  func (s *Stack) RemoveNeighbor(nicID tcpip.NICID, protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) tcpip.Error {
  1630  	s.mu.RLock()
  1631  	nic, ok := s.nics[nicID]
  1632  	s.mu.RUnlock()
  1633  
  1634  	if !ok {
  1635  		return &tcpip.ErrUnknownNICID{}
  1636  	}
  1637  
  1638  	return nic.removeNeighbor(protocol, addr)
  1639  }
  1640  
  1641  // ClearNeighbors removes all IP to MAC address associations.
  1642  func (s *Stack) ClearNeighbors(nicID tcpip.NICID, protocol tcpip.NetworkProtocolNumber) tcpip.Error {
  1643  	s.mu.RLock()
  1644  	nic, ok := s.nics[nicID]
  1645  	s.mu.RUnlock()
  1646  
  1647  	if !ok {
  1648  		return &tcpip.ErrUnknownNICID{}
  1649  	}
  1650  
  1651  	return nic.clearNeighbors(protocol)
  1652  }
  1653  
  1654  // RegisterTransportEndpoint registers the given endpoint with the stack
  1655  // transport dispatcher. Received packets that match the provided id will be
  1656  // delivered to the given endpoint; specifying a nic is optional, but
  1657  // nic-specific IDs have precedence over global ones.
  1658  func (s *Stack) RegisterTransportEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) tcpip.Error {
  1659  	return s.demux.registerEndpoint(netProtos, protocol, id, ep, flags, bindToDevice)
  1660  }
  1661  
  1662  // CheckRegisterTransportEndpoint checks if an endpoint can be registered with
  1663  // the stack transport dispatcher.
  1664  func (s *Stack) CheckRegisterTransportEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, flags ports.Flags, bindToDevice tcpip.NICID) tcpip.Error {
  1665  	return s.demux.checkEndpoint(netProtos, protocol, id, flags, bindToDevice)
  1666  }
  1667  
  1668  // UnregisterTransportEndpoint removes the endpoint with the given id from the
  1669  // stack transport dispatcher.
  1670  func (s *Stack) UnregisterTransportEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) {
  1671  	s.demux.unregisterEndpoint(netProtos, protocol, id, ep, flags, bindToDevice)
  1672  }
  1673  
  1674  // StartTransportEndpointCleanup removes the endpoint with the given id from
  1675  // the stack transport dispatcher. It also transitions it to the cleanup stage.
  1676  func (s *Stack) StartTransportEndpointCleanup(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) {
  1677  	s.cleanupEndpointsMu.Lock()
  1678  	s.cleanupEndpoints[ep] = struct{}{}
  1679  	s.cleanupEndpointsMu.Unlock()
  1680  
  1681  	s.demux.unregisterEndpoint(netProtos, protocol, id, ep, flags, bindToDevice)
  1682  }
  1683  
  1684  // CompleteTransportEndpointCleanup removes the endpoint from the cleanup
  1685  // stage.
  1686  func (s *Stack) CompleteTransportEndpointCleanup(ep TransportEndpoint) {
  1687  	s.cleanupEndpointsMu.Lock()
  1688  	delete(s.cleanupEndpoints, ep)
  1689  	s.cleanupEndpointsMu.Unlock()
  1690  }
  1691  
  1692  // FindTransportEndpoint finds an endpoint that most closely matches the provided
  1693  // id. If no endpoint is found it returns nil.
  1694  func (s *Stack) FindTransportEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, id TransportEndpointID, nicID tcpip.NICID) TransportEndpoint {
  1695  	return s.demux.findTransportEndpoint(netProto, transProto, id, nicID)
  1696  }
  1697  
  1698  // RegisterRawTransportEndpoint registers the given endpoint with the stack
  1699  // transport dispatcher. Received packets that match the provided transport
  1700  // protocol will be delivered to the given endpoint.
  1701  func (s *Stack) RegisterRawTransportEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, ep RawTransportEndpoint) tcpip.Error {
  1702  	return s.demux.registerRawEndpoint(netProto, transProto, ep)
  1703  }
  1704  
  1705  // UnregisterRawTransportEndpoint removes the endpoint for the transport
  1706  // protocol from the stack transport dispatcher.
  1707  func (s *Stack) UnregisterRawTransportEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, ep RawTransportEndpoint) {
  1708  	s.demux.unregisterRawEndpoint(netProto, transProto, ep)
  1709  }
  1710  
  1711  // RegisterRestoredEndpoint records e as an endpoint that has been restored on
  1712  // this stack.
  1713  func (s *Stack) RegisterRestoredEndpoint(e RestoredEndpoint) {
  1714  	s.mu.Lock()
  1715  	defer s.mu.Unlock()
  1716  
  1717  	s.restoredEndpoints = append(s.restoredEndpoints, e)
  1718  }
  1719  
  1720  // RegisterResumableEndpoint records e as an endpoint that has to be resumed.
  1721  func (s *Stack) RegisterResumableEndpoint(e ResumableEndpoint) {
  1722  	s.mu.Lock()
  1723  	defer s.mu.Unlock()
  1724  
  1725  	s.resumableEndpoints = append(s.resumableEndpoints, e)
  1726  }
  1727  
  1728  // RegisteredEndpoints returns all endpoints which are currently registered.
  1729  func (s *Stack) RegisteredEndpoints() []TransportEndpoint {
  1730  	s.mu.Lock()
  1731  	defer s.mu.Unlock()
  1732  
  1733  	var es []TransportEndpoint
  1734  	for _, e := range s.demux.protocol {
  1735  		es = append(es, e.transportEndpoints()...)
  1736  	}
  1737  	return es
  1738  }
  1739  
  1740  // CleanupEndpoints returns endpoints currently in the cleanup state.
  1741  func (s *Stack) CleanupEndpoints() []TransportEndpoint {
  1742  	s.cleanupEndpointsMu.Lock()
  1743  	defer s.cleanupEndpointsMu.Unlock()
  1744  
  1745  	es := make([]TransportEndpoint, 0, len(s.cleanupEndpoints))
  1746  	for e := range s.cleanupEndpoints {
  1747  		es = append(es, e)
  1748  	}
  1749  	return es
  1750  }
  1751  
  1752  // RestoreCleanupEndpoints adds endpoints to cleanup tracking. This is useful
  1753  // for restoring a stack after a save.
  1754  func (s *Stack) RestoreCleanupEndpoints(es []TransportEndpoint) {
  1755  	s.cleanupEndpointsMu.Lock()
  1756  	defer s.cleanupEndpointsMu.Unlock()
  1757  
  1758  	for _, e := range es {
  1759  		s.cleanupEndpoints[e] = struct{}{}
  1760  	}
  1761  }
  1762  
  1763  // Close closes all currently registered transport endpoints.
  1764  //
  1765  // Endpoints created or modified during this call may not get closed.
  1766  func (s *Stack) Close() {
  1767  	for _, e := range s.RegisteredEndpoints() {
  1768  		e.Abort()
  1769  	}
  1770  	for _, p := range s.transportProtocols {
  1771  		p.proto.Close()
  1772  	}
  1773  	for _, p := range s.networkProtocols {
  1774  		p.Close()
  1775  	}
  1776  }
  1777  
  1778  // Wait waits for all transport and link endpoints to halt their worker
  1779  // goroutines.
  1780  //
  1781  // Endpoints created or modified during this call may not get waited on.
  1782  //
  1783  // Note that link endpoints must be stopped via an implementation specific
  1784  // mechanism.
  1785  func (s *Stack) Wait() {
  1786  	for _, e := range s.RegisteredEndpoints() {
  1787  		e.Wait()
  1788  	}
  1789  	for _, e := range s.CleanupEndpoints() {
  1790  		e.Wait()
  1791  	}
  1792  	for _, p := range s.transportProtocols {
  1793  		p.proto.Wait()
  1794  	}
  1795  	for _, p := range s.networkProtocols {
  1796  		p.Wait()
  1797  	}
  1798  
  1799  	s.mu.Lock()
  1800  	defer s.mu.Unlock()
  1801  
  1802  	for id, n := range s.nics {
  1803  		// Remove NIC to ensure that qDisc goroutines are correctly
  1804  		// terminated on stack teardown.
  1805  		s.removeNICLocked(id)
  1806  		n.NetworkLinkEndpoint.Wait()
  1807  	}
  1808  }
  1809  
  1810  // Destroy destroys the stack with all endpoints.
  1811  func (s *Stack) Destroy() {
  1812  	s.Close()
  1813  	s.Wait()
  1814  }
  1815  
  1816  // Pause pauses any protocol level background workers.
  1817  func (s *Stack) Pause() {
  1818  	for _, p := range s.transportProtocols {
  1819  		p.proto.Pause()
  1820  	}
  1821  }
  1822  
  1823  // Restore restarts the stack after a restore. This must be called after the
  1824  // entire system has been restored.
  1825  func (s *Stack) Restore() {
  1826  	// RestoredEndpoint.Restore() may call other methods on s, so we can't hold
  1827  	// s.mu while restoring the endpoints.
  1828  	s.mu.Lock()
  1829  	eps := s.restoredEndpoints
  1830  	s.restoredEndpoints = nil
  1831  	s.mu.Unlock()
  1832  	for _, e := range eps {
  1833  		e.Restore(s)
  1834  	}
  1835  	// Now resume any protocol level background workers.
  1836  	for _, p := range s.transportProtocols {
  1837  		p.proto.Resume()
  1838  	}
  1839  }
  1840  
  1841  // Resume resumes the stack after a save.
  1842  func (s *Stack) Resume() {
  1843  	s.mu.Lock()
  1844  	eps := s.resumableEndpoints
  1845  	s.resumableEndpoints = nil
  1846  	s.mu.Unlock()
  1847  	for _, e := range eps {
  1848  		e.Resume()
  1849  	}
  1850  	// Now resume any protocol level background workers.
  1851  	for _, p := range s.transportProtocols {
  1852  		p.proto.Resume()
  1853  	}
  1854  }
  1855  
  1856  // RegisterPacketEndpoint registers ep with the stack, causing it to receive
  1857  // all traffic of the specified netProto on the given NIC. If nicID is 0, it
  1858  // receives traffic from every NIC.
  1859  func (s *Stack) RegisterPacketEndpoint(nicID tcpip.NICID, netProto tcpip.NetworkProtocolNumber, ep PacketEndpoint) tcpip.Error {
  1860  	s.mu.Lock()
  1861  	defer s.mu.Unlock()
  1862  
  1863  	// If no NIC is specified, capture on all devices.
  1864  	if nicID == 0 {
  1865  		// Register with each NIC.
  1866  		for _, nic := range s.nics {
  1867  			nic.registerPacketEndpoint(netProto, ep)
  1868  		}
  1869  		return nil
  1870  	}
  1871  
  1872  	// Capture on a specific device.
  1873  	nic, ok := s.nics[nicID]
  1874  	if !ok {
  1875  		return &tcpip.ErrUnknownNICID{}
  1876  	}
  1877  	nic.registerPacketEndpoint(netProto, ep)
  1878  
  1879  	return nil
  1880  }
  1881  
  1882  // UnregisterPacketEndpoint unregisters ep for packets of the specified
  1883  // netProto from the specified NIC. If nicID is 0, ep is unregistered from all
  1884  // NICs.
  1885  func (s *Stack) UnregisterPacketEndpoint(nicID tcpip.NICID, netProto tcpip.NetworkProtocolNumber, ep PacketEndpoint) {
  1886  	s.mu.Lock()
  1887  	defer s.mu.Unlock()
  1888  	s.unregisterPacketEndpointLocked(nicID, netProto, ep)
  1889  }
  1890  
  1891  // +checklocks:s.mu
  1892  func (s *Stack) unregisterPacketEndpointLocked(nicID tcpip.NICID, netProto tcpip.NetworkProtocolNumber, ep PacketEndpoint) {
  1893  	// If no NIC is specified, unregister on all devices.
  1894  	if nicID == 0 {
  1895  		// Unregister with each NIC.
  1896  		for _, nic := range s.nics {
  1897  			nic.unregisterPacketEndpoint(netProto, ep)
  1898  		}
  1899  		return
  1900  	}
  1901  
  1902  	// Unregister in a single device.
  1903  	nic, ok := s.nics[nicID]
  1904  	if !ok {
  1905  		return
  1906  	}
  1907  	nic.unregisterPacketEndpoint(netProto, ep)
  1908  }
  1909  
  1910  // WritePacketToRemote writes a payload on the specified NIC using the provided
  1911  // network protocol and remote link address.
  1912  func (s *Stack) WritePacketToRemote(nicID tcpip.NICID, remote tcpip.LinkAddress, netProto tcpip.NetworkProtocolNumber, payload buffer.Buffer) tcpip.Error {
  1913  	s.mu.Lock()
  1914  	nic, ok := s.nics[nicID]
  1915  	s.mu.Unlock()
  1916  	if !ok {
  1917  		return &tcpip.ErrUnknownDevice{}
  1918  	}
  1919  	pkt := NewPacketBuffer(PacketBufferOptions{
  1920  		ReserveHeaderBytes: int(nic.MaxHeaderLength()),
  1921  		Payload:            payload,
  1922  	})
  1923  	defer pkt.DecRef()
  1924  	pkt.NetworkProtocolNumber = netProto
  1925  	return nic.WritePacketToRemote(remote, pkt)
  1926  }
  1927  
  1928  // WriteRawPacket writes data directly to the specified NIC without adding any
  1929  // headers.
  1930  func (s *Stack) WriteRawPacket(nicID tcpip.NICID, proto tcpip.NetworkProtocolNumber, payload buffer.Buffer) tcpip.Error {
  1931  	s.mu.RLock()
  1932  	nic, ok := s.nics[nicID]
  1933  	s.mu.RUnlock()
  1934  	if !ok {
  1935  		return &tcpip.ErrUnknownNICID{}
  1936  	}
  1937  
  1938  	pkt := NewPacketBuffer(PacketBufferOptions{
  1939  		Payload: payload,
  1940  	})
  1941  	defer pkt.DecRef()
  1942  	pkt.NetworkProtocolNumber = proto
  1943  	return nic.writeRawPacketWithLinkHeaderInPayload(pkt)
  1944  }
  1945  
  1946  // NetworkProtocolInstance returns the protocol instance in the stack for the
  1947  // specified network protocol. This method is public for protocol implementers
  1948  // and tests to use.
  1949  func (s *Stack) NetworkProtocolInstance(num tcpip.NetworkProtocolNumber) NetworkProtocol {
  1950  	if p, ok := s.networkProtocols[num]; ok {
  1951  		return p
  1952  	}
  1953  	return nil
  1954  }
  1955  
  1956  // TransportProtocolInstance returns the protocol instance in the stack for the
  1957  // specified transport protocol. This method is public for protocol implementers
  1958  // and tests to use.
  1959  func (s *Stack) TransportProtocolInstance(num tcpip.TransportProtocolNumber) TransportProtocol {
  1960  	if pState, ok := s.transportProtocols[num]; ok {
  1961  		return pState.proto
  1962  	}
  1963  	return nil
  1964  }
  1965  
  1966  // AddTCPProbe installs a probe function that will be invoked on every segment
  1967  // received by a given TCP endpoint. The probe function is passed a copy of the
  1968  // TCP endpoint state before and after processing of the segment.
  1969  //
  1970  // NOTE: TCPProbe is added only to endpoints created after this call. Endpoints
  1971  // created prior to this call will not call the probe function.
  1972  //
  1973  // Further, installing two different probes back to back can result in some
  1974  // endpoints calling the first one and some the second one. There is no
  1975  // guarantee provided on which probe will be invoked. Ideally this should only
  1976  // be called once per stack.
  1977  func (s *Stack) AddTCPProbe(probe TCPProbeFunc) {
  1978  	s.tcpProbeFunc.Store(probe)
  1979  }
  1980  
  1981  // GetTCPProbe returns the TCPProbeFunc if installed with AddTCPProbe, nil
  1982  // otherwise.
  1983  func (s *Stack) GetTCPProbe() TCPProbeFunc {
  1984  	p := s.tcpProbeFunc.Load()
  1985  	if p == nil {
  1986  		return nil
  1987  	}
  1988  	return p.(TCPProbeFunc)
  1989  }
  1990  
  1991  // RemoveTCPProbe removes an installed TCP probe.
  1992  //
  1993  // NOTE: This only ensures that endpoints created after this call do not
  1994  // have a probe attached. Endpoints already created will continue to invoke
  1995  // TCP probe.
  1996  func (s *Stack) RemoveTCPProbe() {
  1997  	// This must be TCPProbeFunc(nil) because atomic.Value.Store(nil) panics.
  1998  	s.tcpProbeFunc.Store(TCPProbeFunc(nil))
  1999  }
  2000  
  2001  // JoinGroup joins the given multicast group on the given NIC.
  2002  func (s *Stack) JoinGroup(protocol tcpip.NetworkProtocolNumber, nicID tcpip.NICID, multicastAddr tcpip.Address) tcpip.Error {
  2003  	s.mu.RLock()
  2004  	defer s.mu.RUnlock()
  2005  
  2006  	if nic, ok := s.nics[nicID]; ok {
  2007  		return nic.joinGroup(protocol, multicastAddr)
  2008  	}
  2009  	return &tcpip.ErrUnknownNICID{}
  2010  }
  2011  
  2012  // LeaveGroup leaves the given multicast group on the given NIC.
  2013  func (s *Stack) LeaveGroup(protocol tcpip.NetworkProtocolNumber, nicID tcpip.NICID, multicastAddr tcpip.Address) tcpip.Error {
  2014  	s.mu.RLock()
  2015  	defer s.mu.RUnlock()
  2016  
  2017  	if nic, ok := s.nics[nicID]; ok {
  2018  		return nic.leaveGroup(protocol, multicastAddr)
  2019  	}
  2020  	return &tcpip.ErrUnknownNICID{}
  2021  }
  2022  
  2023  // IsInGroup returns true if the NIC with ID nicID has joined the multicast
  2024  // group multicastAddr.
  2025  func (s *Stack) IsInGroup(nicID tcpip.NICID, multicastAddr tcpip.Address) (bool, tcpip.Error) {
  2026  	s.mu.RLock()
  2027  	defer s.mu.RUnlock()
  2028  
  2029  	if nic, ok := s.nics[nicID]; ok {
  2030  		return nic.isInGroup(multicastAddr), nil
  2031  	}
  2032  	return false, &tcpip.ErrUnknownNICID{}
  2033  }
  2034  
  2035  // IPTables returns the stack's iptables.
  2036  func (s *Stack) IPTables() *IPTables {
  2037  	return s.tables
  2038  }
  2039  
  2040  // ICMPLimit returns the maximum number of ICMP messages that can be sent
  2041  // in one second.
  2042  func (s *Stack) ICMPLimit() rate.Limit {
  2043  	return s.icmpRateLimiter.Limit()
  2044  }
  2045  
  2046  // SetICMPLimit sets the maximum number of ICMP messages that be sent
  2047  // in one second.
  2048  func (s *Stack) SetICMPLimit(newLimit rate.Limit) {
  2049  	s.icmpRateLimiter.SetLimit(newLimit)
  2050  }
  2051  
  2052  // ICMPBurst returns the maximum number of ICMP messages that can be sent
  2053  // in a single burst.
  2054  func (s *Stack) ICMPBurst() int {
  2055  	return s.icmpRateLimiter.Burst()
  2056  }
  2057  
  2058  // SetICMPBurst sets the maximum number of ICMP messages that can be sent
  2059  // in a single burst.
  2060  func (s *Stack) SetICMPBurst(burst int) {
  2061  	s.icmpRateLimiter.SetBurst(burst)
  2062  }
  2063  
  2064  // AllowICMPMessage returns true if we the rate limiter allows at least one
  2065  // ICMP message to be sent at this instant.
  2066  func (s *Stack) AllowICMPMessage() bool {
  2067  	return s.icmpRateLimiter.Allow()
  2068  }
  2069  
  2070  // GetNetworkEndpoint returns the NetworkEndpoint with the specified protocol
  2071  // number installed on the specified NIC.
  2072  func (s *Stack) GetNetworkEndpoint(nicID tcpip.NICID, proto tcpip.NetworkProtocolNumber) (NetworkEndpoint, tcpip.Error) {
  2073  	s.mu.Lock()
  2074  	defer s.mu.Unlock()
  2075  
  2076  	nic, ok := s.nics[nicID]
  2077  	if !ok {
  2078  		return nil, &tcpip.ErrUnknownNICID{}
  2079  	}
  2080  
  2081  	return nic.getNetworkEndpoint(proto), nil
  2082  }
  2083  
  2084  // NUDConfigurations gets the per-interface NUD configurations.
  2085  func (s *Stack) NUDConfigurations(id tcpip.NICID, proto tcpip.NetworkProtocolNumber) (NUDConfigurations, tcpip.Error) {
  2086  	s.mu.RLock()
  2087  	nic, ok := s.nics[id]
  2088  	s.mu.RUnlock()
  2089  
  2090  	if !ok {
  2091  		return NUDConfigurations{}, &tcpip.ErrUnknownNICID{}
  2092  	}
  2093  
  2094  	return nic.nudConfigs(proto)
  2095  }
  2096  
  2097  // SetNUDConfigurations sets the per-interface NUD configurations.
  2098  //
  2099  // Note, if c contains invalid NUD configuration values, it will be fixed to
  2100  // use default values for the erroneous values.
  2101  func (s *Stack) SetNUDConfigurations(id tcpip.NICID, proto tcpip.NetworkProtocolNumber, c NUDConfigurations) tcpip.Error {
  2102  	s.mu.RLock()
  2103  	nic, ok := s.nics[id]
  2104  	s.mu.RUnlock()
  2105  
  2106  	if !ok {
  2107  		return &tcpip.ErrUnknownNICID{}
  2108  	}
  2109  
  2110  	return nic.setNUDConfigs(proto, c)
  2111  }
  2112  
  2113  // Seed returns a 32 bit value that can be used as a seed value.
  2114  //
  2115  // NOTE: The seed is generated once during stack initialization only.
  2116  func (s *Stack) Seed() uint32 {
  2117  	return s.seed
  2118  }
  2119  
  2120  // InsecureRNG returns a reference to a pseudo random generator that can be used
  2121  // to generate random numbers as required. It is not cryptographically secure
  2122  // and should not be used for security sensitive work.
  2123  func (s *Stack) InsecureRNG() *rand.Rand {
  2124  	return s.insecureRNG
  2125  }
  2126  
  2127  // SecureRNG returns the stack's cryptographically secure random number
  2128  // generator.
  2129  func (s *Stack) SecureRNG() cryptorand.RNG {
  2130  	return s.secureRNG
  2131  }
  2132  
  2133  // FindNICNameFromID returns the name of the NIC for the given NICID.
  2134  func (s *Stack) FindNICNameFromID(id tcpip.NICID) string {
  2135  	s.mu.RLock()
  2136  	defer s.mu.RUnlock()
  2137  
  2138  	nic, ok := s.nics[id]
  2139  	if !ok {
  2140  		return ""
  2141  	}
  2142  
  2143  	return nic.Name()
  2144  }
  2145  
  2146  // ParseResult indicates the result of a parsing attempt.
  2147  type ParseResult int
  2148  
  2149  const (
  2150  	// ParsedOK indicates that a packet was successfully parsed.
  2151  	ParsedOK ParseResult = iota
  2152  
  2153  	// UnknownTransportProtocol indicates that the transport protocol is unknown.
  2154  	UnknownTransportProtocol
  2155  
  2156  	// TransportLayerParseError indicates that the transport packet was not
  2157  	// successfully parsed.
  2158  	TransportLayerParseError
  2159  )
  2160  
  2161  // ParsePacketBufferTransport parses the provided packet buffer's transport
  2162  // header.
  2163  func (s *Stack) ParsePacketBufferTransport(protocol tcpip.TransportProtocolNumber, pkt *PacketBuffer) ParseResult {
  2164  	pkt.TransportProtocolNumber = protocol
  2165  	// Parse the transport header if present.
  2166  	state, ok := s.transportProtocols[protocol]
  2167  	if !ok {
  2168  		return UnknownTransportProtocol
  2169  	}
  2170  
  2171  	if !state.proto.Parse(pkt) {
  2172  		return TransportLayerParseError
  2173  	}
  2174  
  2175  	return ParsedOK
  2176  }
  2177  
  2178  // networkProtocolNumbers returns the network protocol numbers the stack is
  2179  // configured with.
  2180  func (s *Stack) networkProtocolNumbers() []tcpip.NetworkProtocolNumber {
  2181  	protos := make([]tcpip.NetworkProtocolNumber, 0, len(s.networkProtocols))
  2182  	for p := range s.networkProtocols {
  2183  		protos = append(protos, p)
  2184  	}
  2185  	return protos
  2186  }
  2187  
  2188  func isSubnetBroadcastOnNIC(nic *nic, protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) bool {
  2189  	addressEndpoint := nic.getAddressOrCreateTempInner(protocol, addr, false /* createTemp */, NeverPrimaryEndpoint)
  2190  	if addressEndpoint == nil {
  2191  		return false
  2192  	}
  2193  
  2194  	subnet := addressEndpoint.Subnet()
  2195  	addressEndpoint.DecRef()
  2196  	return subnet.IsBroadcast(addr)
  2197  }
  2198  
  2199  // IsSubnetBroadcast returns true if the provided address is a subnet-local
  2200  // broadcast address on the specified NIC and protocol.
  2201  //
  2202  // Returns false if the NIC is unknown or if the protocol is unknown or does
  2203  // not support addressing.
  2204  //
  2205  // If the NIC is not specified, the stack will check all NICs.
  2206  func (s *Stack) IsSubnetBroadcast(nicID tcpip.NICID, protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) bool {
  2207  	s.mu.RLock()
  2208  	defer s.mu.RUnlock()
  2209  
  2210  	if nicID != 0 {
  2211  		nic, ok := s.nics[nicID]
  2212  		if !ok {
  2213  			return false
  2214  		}
  2215  
  2216  		return isSubnetBroadcastOnNIC(nic, protocol, addr)
  2217  	}
  2218  
  2219  	for _, nic := range s.nics {
  2220  		if isSubnetBroadcastOnNIC(nic, protocol, addr) {
  2221  			return true
  2222  		}
  2223  	}
  2224  
  2225  	return false
  2226  }
  2227  
  2228  // PacketEndpointWriteSupported returns true iff packet endpoints support write
  2229  // operations.
  2230  func (s *Stack) PacketEndpointWriteSupported() bool {
  2231  	return s.packetEndpointWriteSupported
  2232  }