launchpad.net/~rogpeppe/juju-core/500-errgo-fix@v0.0.0-20140213181702-000000002356/thirdparty/pbkdf2/pbkdf2.go (about)

     1  // Original package at code.google.com/p/go.crypto/pbkdf2
     2  
     3  // Copyright 2012 The Go Authors. All rights reserved.
     4  // Use of this source code is governed by a BSD-style
     5  // license that can be found in the LICENSE file.
     6  
     7  /*
     8  Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC
     9  2898 / PKCS #5 v2.0.
    10  
    11  A key derivation function is useful when encrypting data based on a password
    12  or any other not-fully-random data. It uses a pseudorandom function to derive
    13  a secure encryption key based on the password.
    14  
    15  While v2.0 of the standard defines only one pseudorandom function to use,
    16  HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved
    17  Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To
    18  choose, you can pass the `New` functions from the different SHA packages to
    19  pbkdf2.Key.
    20  */
    21  package pbkdf2
    22  
    23  import (
    24  	"crypto/hmac"
    25  	"hash"
    26  )
    27  
    28  // Key derives a key from the password, salt and iteration count, returning a
    29  // []byte of length keylen that can be used as cryptographic key. The key is
    30  // derived based on the method described as PBKDF2 with the HMAC variant using
    31  // the supplied hash function.
    32  //
    33  // For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you
    34  // can get a derived key for e.g. AES-256 (which needs a 32-byte key) by
    35  // doing:
    36  //
    37  // 	dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New)
    38  //
    39  // Remember to get a good random salt. At least 8 bytes is recommended by the
    40  // RFC.
    41  //
    42  // Using a higher iteration count will increase the cost of an exhaustive
    43  // search but will also make derivation proportionally slower.
    44  func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte {
    45  	prf := hmac.New(h, password)
    46  	hashLen := prf.Size()
    47  	numBlocks := (keyLen + hashLen - 1) / hashLen
    48  
    49  	var buf [4]byte
    50  	dk := make([]byte, 0, numBlocks*hashLen)
    51  	U := make([]byte, hashLen)
    52  	for block := 1; block <= numBlocks; block++ {
    53  		// N.B.: || means concatenation, ^ means XOR
    54  		// for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter
    55  		// U_1 = PRF(password, salt || uint(i))
    56  		prf.Reset()
    57  		prf.Write(salt)
    58  		buf[0] = byte(block >> 24)
    59  		buf[1] = byte(block >> 16)
    60  		buf[2] = byte(block >> 8)
    61  		buf[3] = byte(block)
    62  		prf.Write(buf[:4])
    63  		dk = prf.Sum(dk)
    64  		T := dk[len(dk)-hashLen:]
    65  		copy(U, T)
    66  
    67  		// U_n = PRF(password, U_(n-1))
    68  		for n := 2; n <= iter; n++ {
    69  			prf.Reset()
    70  			prf.Write(U)
    71  			U = U[:0]
    72  			U = prf.Sum(U)
    73  			for x := range U {
    74  				T[x] ^= U[x]
    75  			}
    76  		}
    77  	}
    78  	return dk[:keyLen]
    79  }