modernc.org/cc@v1.0.1/v2/testdata/_sqlite/test/e_select.test (about)

     1  # 2010 July 16
     2  #
     3  # The author disclaims copyright to this source code.  In place of
     4  # a legal notice, here is a blessing:
     5  #
     6  #    May you do good and not evil.
     7  #    May you find forgiveness for yourself and forgive others.
     8  #    May you share freely, never taking more than you give.
     9  #
    10  #***********************************************************************
    11  #
    12  # This file implements tests to verify that the "testable statements" in 
    13  # the lang_select.html document are correct.
    14  #
    15  
    16  set testdir [file dirname $argv0]
    17  source $testdir/tester.tcl
    18  
    19  ifcapable !compound {
    20    finish_test
    21    return
    22  }
    23  
    24  do_execsql_test e_select-1.0 {
    25    CREATE TABLE t1(a, b);
    26    INSERT INTO t1 VALUES('a', 'one');
    27    INSERT INTO t1 VALUES('b', 'two');
    28    INSERT INTO t1 VALUES('c', 'three');
    29  
    30    CREATE TABLE t2(a, b);
    31    INSERT INTO t2 VALUES('a', 'I');
    32    INSERT INTO t2 VALUES('b', 'II');
    33    INSERT INTO t2 VALUES('c', 'III');
    34  
    35    CREATE TABLE t3(a, c);
    36    INSERT INTO t3 VALUES('a', 1);
    37    INSERT INTO t3 VALUES('b', 2);
    38  
    39    CREATE TABLE t4(a, c);
    40    INSERT INTO t4 VALUES('a', NULL);
    41    INSERT INTO t4 VALUES('b', 2);
    42  } {}
    43  set t1_cross_t2 [list                \
    44     a one   a I      a one   b II     \
    45     a one   c III    b two   a I      \
    46     b two   b II     b two   c III    \
    47     c three a I      c three b II     \
    48     c three c III                     \
    49  ]
    50  set t1_cross_t1 [list                  \
    51     a one   a one      a one   b two    \
    52     a one   c three    b two   a one    \
    53     b two   b two      b two   c three  \
    54     c three a one      c three b two    \
    55     c three c three                     \
    56  ]
    57  
    58  
    59  # This proc is a specialized version of [do_execsql_test].
    60  #
    61  # The second argument to this proc must be a SELECT statement that 
    62  # features a cross join of some time. Instead of the usual ",", 
    63  # "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be 
    64  # substituted.
    65  #
    66  # This test runs the SELECT three times - once with:
    67  #
    68  #   * s/%JOIN%/,/
    69  #   * s/%JOIN%/JOIN/
    70  #   * s/%JOIN%/INNER JOIN/
    71  #   * s/%JOIN%/CROSS JOIN/
    72  #
    73  # and checks that each time the results of the SELECT are $res.
    74  #
    75  proc do_join_test {tn select res} {
    76    foreach {tn2 joinop} [list    1 ,    2 "CROSS JOIN"    3 "INNER JOIN"] {
    77      set S [string map [list %JOIN% $joinop] $select]
    78      uplevel do_execsql_test $tn.$tn2 [list $S] [list $res]
    79    }
    80  }
    81  
    82  #-------------------------------------------------------------------------
    83  # The following tests check that all paths on the syntax diagrams on
    84  # the lang_select.html page may be taken.
    85  #
    86  # -- syntax diagram join-constraint
    87  #
    88  do_join_test e_select-0.1.1 {
    89    SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
    90  } {3}
    91  do_join_test e_select-0.1.2 {
    92    SELECT count(*) FROM t1 %JOIN% t2 USING (a)
    93  } {3}
    94  do_join_test e_select-0.1.3 {
    95    SELECT count(*) FROM t1 %JOIN% t2
    96  } {9}
    97  do_catchsql_test e_select-0.1.4 {
    98    SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
    99  } {1 {cannot have both ON and USING clauses in the same join}}
   100  do_catchsql_test e_select-0.1.5 {
   101    SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
   102  } {1 {near "ON": syntax error}}
   103  
   104  # -- syntax diagram select-core
   105  #
   106  #   0: SELECT ...
   107  #   1: SELECT DISTINCT ...
   108  #   2: SELECT ALL ...
   109  #
   110  #   0: No FROM clause
   111  #   1: Has FROM clause
   112  #
   113  #   0: No WHERE clause
   114  #   1: Has WHERE clause
   115  #
   116  #   0: No GROUP BY clause
   117  #   1: Has GROUP BY clause
   118  #   2: Has GROUP BY and HAVING clauses
   119  #
   120  do_select_tests e_select-0.2 {
   121    0000.1  "SELECT 1, 2, 3 " {1 2 3}
   122    1000.1  "SELECT DISTINCT 1, 2, 3 " {1 2 3}
   123    2000.1  "SELECT ALL 1, 2, 3 " {1 2 3}
   124    
   125    0100.1  "SELECT a, b, a||b FROM t1 " {
   126      a one aone b two btwo c three cthree
   127    }
   128    1100.1  "SELECT DISTINCT a, b, a||b FROM t1 " {
   129      a one aone b two btwo c three cthree
   130    }
   131    1200.1  "SELECT ALL a, b, a||b FROM t1 " {
   132      a one aone b two btwo c three cthree
   133    }
   134  
   135    0010.1  "SELECT 1, 2, 3 WHERE 1 " {1 2 3}
   136    0010.2  "SELECT 1, 2, 3 WHERE 0 " {}
   137    0010.3  "SELECT 1, 2, 3 WHERE NULL " {}
   138  
   139    1010.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3}
   140  
   141    2010.1  "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3}
   142  
   143    0110.1  "SELECT a, b, a||b FROM t1 WHERE a!='x' " {
   144      a one aone b two btwo c three cthree
   145    }
   146    0110.2  "SELECT a, b, a||b FROM t1 WHERE a=='x'" {}
   147  
   148    1110.1  "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " {
   149      a one aone b two btwo c three cthree
   150    }
   151  
   152    2110.0  "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {}
   153  
   154    0001.1  "SELECT 1, 2, 3 GROUP BY 2" {1 2 3}
   155    0002.1  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
   156    0002.2  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
   157  
   158    1001.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3}
   159    1002.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
   160    1002.2  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
   161  
   162    2001.1  "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3}
   163    2002.1  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
   164    2002.2  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
   165  
   166    0101.1  "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
   167    0102.1  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" {
   168      1 a 1 c 1 b
   169    }
   170    0102.2  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" { }
   171  
   172    1101.1  "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
   173    1102.1  "SELECT DISTINCT count(*), max(a) FROM t1 
   174             GROUP BY b HAVING count(*)=1" {
   175      1 a 1 c 1 b
   176    }
   177    1102.2  "SELECT DISTINCT count(*), max(a) FROM t1 
   178             GROUP BY b HAVING count(*)=2" { 
   179    }
   180  
   181    2101.1  "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
   182    2102.1  "SELECT ALL count(*), max(a) FROM t1 
   183             GROUP BY b HAVING count(*)=1" {
   184      1 a 1 c 1 b
   185    }
   186    2102.2  "SELECT ALL count(*), max(a) FROM t1 
   187             GROUP BY b HAVING count(*)=2" { 
   188    }
   189  
   190    0011.1  "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
   191    0012.1  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
   192    0012.2  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {}
   193  
   194    1011.1  "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {}
   195    1012.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1" 
   196            {1 2 3}
   197    1012.2  "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {}
   198  
   199    2011.1  "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
   200    2012.1  "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
   201    2012.2  "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {}
   202  
   203    0111.1  "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a}
   204    0112.1  "SELECT count(*), max(a) FROM t1 
   205             WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c}
   206    0112.2  "SELECT count(*), max(a) FROM t1 
   207             WHERE 0 GROUP BY b HAVING count(*)=2" { }
   208    1111.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b" 
   209            {1 a 1 b}
   210    1112.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a'
   211             GROUP BY b HAVING count(*)=1" {
   212      1 c 1 b
   213    }
   214    1112.2  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0
   215             GROUP BY b HAVING count(*)=2" { 
   216    }
   217  
   218    2111.1  "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b" 
   219            {1 c 1 b}
   220    2112.1  "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b'
   221             GROUP BY b HAVING count(*)=1" {
   222      1 a 1 c
   223    }
   224    2112.2  "SELECT ALL count(*), max(a) FROM t1 
   225             WHERE 0 GROUP BY b HAVING count(*)=2" { }
   226  }
   227  
   228  
   229  # -- syntax diagram result-column
   230  #
   231  do_select_tests e_select-0.3 {
   232    1  "SELECT * FROM t1" {a one b two c three}
   233    2  "SELECT t1.* FROM t1" {a one b two c three}
   234    3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
   235    4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
   236    5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
   237  }
   238  
   239  # -- syntax diagram join-source
   240  #
   241  # -- syntax diagram join-op
   242  #
   243  do_select_tests e_select-0.4 {
   244    1  "SELECT t1.rowid FROM t1" {1 2 3}
   245    2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
   246    3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
   247  
   248    4  "SELECT t1.rowid FROM t1" {1 2 3}
   249    5  "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3}
   250    6  "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3" 
   251       {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
   252  
   253    7  "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2}
   254    8  "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3}
   255    9  "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3}
   256    10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2}
   257    11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2}
   258  
   259    12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
   260    13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
   261    14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3}
   262    15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
   263    16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
   264  }
   265  
   266  # -- syntax diagram compound-operator
   267  #
   268  do_select_tests e_select-0.5 {
   269    1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
   270    2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
   271    3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
   272    4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
   273  }
   274  
   275  # -- syntax diagram ordering-term
   276  #
   277  do_select_tests e_select-0.6 {
   278    1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
   279    2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
   280    3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
   281    4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
   282  }
   283  
   284  # -- syntax diagram select-stmt
   285  #
   286  do_select_tests e_select-0.7 {
   287    1  "SELECT * FROM t1" {a one b two c three}
   288    2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
   289    3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}
   290  
   291    4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}
   292    5  "SELECT * FROM t1 LIMIT 10 OFFSET 5" {}
   293    6  "SELECT * FROM t1 LIMIT 10, 5" {}
   294  
   295    7  "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three}
   296    8  "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {}
   297    9  "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {}
   298  
   299    10  "SELECT * FROM t1 UNION SELECT b, a FROM t1" 
   300       {a one b two c three one a three c two b}
   301    11  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b" 
   302       {one a two b three c a one c three b two}
   303    12  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a" 
   304       {one a two b three c a one c three b two}
   305    13  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10" 
   306       {a one b two c three one a three c two b}
   307    14  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5" 
   308       {two b}
   309    15  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5" 
   310       {}
   311    16  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10" 
   312       {a one b two c three one a three c two b}
   313    17  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5" 
   314       {b two}
   315    18  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5" 
   316       {}
   317  }
   318  
   319  #-------------------------------------------------------------------------
   320  # The following tests focus on FROM clause (join) processing.
   321  #
   322  
   323  # EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple
   324  # SELECT statement, then the input data is implicitly a single row zero
   325  # columns wide
   326  #
   327  do_select_tests e_select-1.1 {
   328    1 "SELECT 'abc'"            {abc}
   329    2 "SELECT 'abc' WHERE NULL" {}
   330    3 "SELECT NULL"             {{}}
   331    4 "SELECT count(*)"         {1}
   332    5 "SELECT count(*) WHERE 0" {0}
   333    6 "SELECT count(*) WHERE 1" {1}
   334  }
   335  
   336  # EVIDENCE-OF: R-45424-07352 If there is only a single table or subquery
   337  # in the FROM clause, then the input data used by the SELECT statement
   338  # is the contents of the named table.
   339  #
   340  #   The results of the SELECT queries suggest that they are operating on the
   341  #   contents of the table 'xx'.
   342  #
   343  do_execsql_test e_select-1.2.0 {
   344    CREATE TABLE xx(x, y);
   345    INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2');
   346    INSERT INTO xx VALUES(NULL, -16.87);
   347    INSERT INTO xx VALUES(-17.89, 'linguistically');
   348  } {}
   349  do_select_tests e_select-1.2 {
   350    1  "SELECT quote(x), quote(y) FROM xx" {
   351       'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2' 
   352       NULL             -16.87                          
   353       -17.89           'linguistically'                
   354    }
   355  
   356    2  "SELECT count(*), count(x), count(y) FROM xx" {3 2 3}
   357    3  "SELECT sum(x), sum(y) FROM xx"               {-17.89 -16.87}
   358  }
   359  
   360  # EVIDENCE-OF: R-28355-09804 If there is more than one table or subquery
   361  # in FROM clause then the contents of all tables and/or subqueries are
   362  # joined into a single dataset for the simple SELECT statement to
   363  # operate on.
   364  #
   365  #   There are more detailed tests for subsequent requirements that add 
   366  #   more detail to this idea. We just add a single test that shows that
   367  #   data is coming from each of the three tables following the FROM clause
   368  #   here to show that the statement, vague as it is, is not incorrect.
   369  #
   370  do_select_tests e_select-1.3 {
   371    1 "SELECT * FROM t1, t2, t3" {
   372        a one a I a 1 a one a I b 2 a one b II a 1 
   373        a one b II b 2 a one c III a 1 a one c III b 2 
   374        b two a I a 1 b two a I b 2 b two b II a 1 
   375        b two b II b 2 b two c III a 1 b two c III b 2 
   376        c three a I a 1 c three a I b 2 c three b II a 1 
   377        c three b II b 2 c three c III a 1 c three c III b 2
   378    }
   379  }
   380  
   381  #
   382  # The following block of tests - e_select-1.4.* - test that the description
   383  # of cartesian joins in the SELECT documentation is consistent with SQLite.
   384  # In doing so, we test the following three requirements as a side-effect:
   385  #
   386  # EVIDENCE-OF: R-49872-03192 If the join-operator is "CROSS JOIN",
   387  # "INNER JOIN", "JOIN" or a comma (",") and there is no ON or USING
   388  # clause, then the result of the join is simply the cartesian product of
   389  # the left and right-hand datasets.
   390  #
   391  #    The tests are built on this assertion. Really, they test that the output
   392  #    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
   393  #    of calculating the cartesian product of the left and right-hand datasets. 
   394  #
   395  # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
   396  # JOIN", "JOIN" and "," join operators.
   397  #
   398  # EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the
   399  # same result as the "INNER JOIN", "JOIN" and "," operators
   400  #
   401  #    All tests are run 4 times, with the only difference in each run being
   402  #    which of the 4 equivalent cartesian product join operators are used.
   403  #    Since the output data is the same in all cases, we consider that this
   404  #    qualifies as testing the two statements above.
   405  #
   406  do_execsql_test e_select-1.4.0 {
   407    CREATE TABLE x1(a, b);
   408    CREATE TABLE x2(c, d, e);
   409    CREATE TABLE x3(f, g, h, i);
   410  
   411    -- x1: 3 rows, 2 columns
   412    INSERT INTO x1 VALUES(24, 'converging');
   413    INSERT INTO x1 VALUES(NULL, X'CB71');
   414    INSERT INTO x1 VALUES('blonds', 'proprietary');
   415  
   416    -- x2: 2 rows, 3 columns
   417    INSERT INTO x2 VALUES(-60.06, NULL, NULL);
   418    INSERT INTO x2 VALUES(-58, NULL, 1.21);
   419  
   420    -- x3: 5 rows, 4 columns
   421    INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1);
   422    INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified');
   423    INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL);
   424    INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3);
   425    INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL);
   426  } {}
   427  
   428  # EVIDENCE-OF: R-59089-25828 The columns of the cartesian product
   429  # dataset are, in order, all the columns of the left-hand dataset
   430  # followed by all the columns of the right-hand dataset.
   431  #
   432  do_join_test e_select-1.4.1.1 {
   433    SELECT * FROM x1 %JOIN% x2 LIMIT 1
   434  } [concat {24 converging} {-60.06 {} {}}]
   435  
   436  do_join_test e_select-1.4.1.2 {
   437    SELECT * FROM x2 %JOIN% x1 LIMIT 1
   438  } [concat {-60.06 {} {}} {24 converging}]
   439  
   440  do_join_test e_select-1.4.1.3 {
   441    SELECT * FROM x3 %JOIN% x2 LIMIT 1
   442  } [concat {-39.24 {} encompass -1} {-60.06 {} {}}]
   443  
   444  do_join_test e_select-1.4.1.4 {
   445    SELECT * FROM x2 %JOIN% x3 LIMIT 1
   446  } [concat {-60.06 {} {}} {-39.24 {} encompass -1}]
   447  
   448  # EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
   449  # dataset formed by combining each unique combination of a row from the
   450  # left-hand and right-hand datasets.
   451  #
   452  do_join_test e_select-1.4.2.1 {
   453    SELECT * FROM x2 %JOIN% x3 ORDER BY +c, +f
   454  } [list -60.06 {} {}      -39.24 {} encompass -1                 \
   455          -60.06 {} {}      alerting {} -93.79 {}                  \
   456          -60.06 {} {}      coldest -96 dramatists 82.3            \
   457          -60.06 {} {}      conducting -87.24 37.56 {}             \
   458          -60.06 {} {}      presenting 51 reformation dignified    \
   459          -58 {} 1.21       -39.24 {} encompass -1                 \
   460          -58 {} 1.21       alerting {} -93.79 {}                  \
   461          -58 {} 1.21       coldest -96 dramatists 82.3            \
   462          -58 {} 1.21       conducting -87.24 37.56 {}             \
   463          -58 {} 1.21       presenting 51 reformation dignified    \
   464  ]
   465  # TODO: Come back and add a few more like the above.
   466  
   467  # EVIDENCE-OF: R-18439-38548 In other words, if the left-hand dataset
   468  # consists of Nleft rows of Mleft columns, and the right-hand dataset of
   469  # Nright rows of Mright columns, then the cartesian product is a dataset
   470  # of Nleft&times;Nright rows, each containing Mleft+Mright columns.
   471  #
   472  # x1, x2    (Nlhs=3, Nrhs=2)   (Mlhs=2, Mrhs=3)
   473  do_join_test e_select-1.4.3.1 { 
   474    SELECT count(*) FROM x1 %JOIN% x2 
   475  } [expr 3*2]
   476  do_test e_select-1.4.3.2 { 
   477    expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6}
   478  } [expr 2+3]
   479  
   480  # x2, x3    (Nlhs=2, Nrhs=5)   (Mlhs=3, Mrhs=4)
   481  do_join_test e_select-1.4.3.3 { 
   482    SELECT count(*) FROM x2 %JOIN% x3 
   483  } [expr 2*5]
   484  do_test e_select-1.4.3.4 { 
   485    expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10}
   486  } [expr 3+4]
   487  
   488  # x3, x1    (Nlhs=5, Nrhs=3)   (Mlhs=4, Mrhs=2)
   489  do_join_test e_select-1.4.3.5 { 
   490    SELECT count(*) FROM x3 %JOIN% x1 
   491  } [expr 5*3]
   492  do_test e_select-1.4.3.6 { 
   493    expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15}
   494  } [expr 4+2]
   495  
   496  # x3, x3    (Nlhs=5, Nrhs=5)   (Mlhs=4, Mrhs=4)
   497  do_join_test e_select-1.4.3.7 { 
   498    SELECT count(*) FROM x3 %JOIN% x3 
   499  } [expr 5*5]
   500  do_test e_select-1.4.3.8 { 
   501    expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25}
   502  } [expr 4+4]
   503  
   504  # Some extra cartesian product tests using tables t1 and t2.
   505  #
   506  do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2
   507  do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1
   508  
   509  do_select_tests e_select-1.4.5 [list                                   \
   510      1 { SELECT * FROM t1 CROSS JOIN t2 }           $t1_cross_t2        \
   511      2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1        \
   512      3 { SELECT * FROM t1 INNER JOIN t2 }           $t1_cross_t2        \
   513      4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1        \
   514  ]
   515  
   516  # EVIDENCE-OF: R-38465-03616 If there is an ON clause then the ON
   517  # expression is evaluated for each row of the cartesian product as a
   518  # boolean expression. Only rows for which the expression evaluates to
   519  # true are included from the dataset.
   520  #
   521  foreach {tn select res} [list                                              \
   522      1 { SELECT * FROM t1 %JOIN% t2 ON (1) }       $t1_cross_t2             \
   523      2 { SELECT * FROM t1 %JOIN% t2 ON (0) }       [list]                   \
   524      3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) }    [list]                   \
   525      4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') }   [list]                   \
   526      5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') }   $t1_cross_t2             \
   527      6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) }     $t1_cross_t2             \
   528      7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') }   $t1_cross_t2             \
   529      8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) }     [list]                   \
   530                                                                             \
   531      9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) }             \
   532        {one I two II three III}                                             \
   533     10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') }              \
   534        {one I one II one III}                                               \
   535     11 { SELECT t1.b, t2.b 
   536          FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \
   537        {two I two II two III three I three II three III}                    \
   538  ] {
   539    do_join_test e_select-1.3.$tn $select $res
   540  }
   541  
   542  # EVIDENCE-OF: R-49933-05137 If there is a USING clause then each of the
   543  # column names specified must exist in the datasets to both the left and
   544  # right of the join-operator.
   545  #
   546  do_select_tests e_select-1.4 -error {
   547    cannot join using column %s - column not present in both tables
   548  } {
   549    1 { SELECT * FROM t1, t3 USING (b) }   "b"
   550    2 { SELECT * FROM t3, t1 USING (c) }   "c"
   551    3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) }   "a"
   552  } 
   553  
   554  # EVIDENCE-OF: R-22776-52830 For each pair of named columns, the
   555  # expression "lhs.X = rhs.X" is evaluated for each row of the cartesian
   556  # product as a boolean expression. Only rows for which all such
   557  # expressions evaluates to true are included from the result set.
   558  #
   559  do_select_tests e_select-1.5 {
   560    1 { SELECT * FROM t1, t3 USING (a)   }  {a one 1 b two 2}
   561    2 { SELECT * FROM t3, t4 USING (a,c) }  {b 2}
   562  } 
   563  
   564  # EVIDENCE-OF: R-54046-48600 When comparing values as a result of a
   565  # USING clause, the normal rules for handling affinities, collation
   566  # sequences and NULL values in comparisons apply.
   567  #
   568  # EVIDENCE-OF: R-38422-04402 The column from the dataset on the
   569  # left-hand side of the join-operator is considered to be on the
   570  # left-hand side of the comparison operator (=) for the purposes of
   571  # collation sequence and affinity precedence.
   572  #
   573  do_execsql_test e_select-1.6.0 {
   574    CREATE TABLE t5(a COLLATE nocase, b COLLATE binary);
   575    INSERT INTO t5 VALUES('AA', 'cc');
   576    INSERT INTO t5 VALUES('BB', 'dd');
   577    INSERT INTO t5 VALUES(NULL, NULL);
   578    CREATE TABLE t6(a COLLATE binary, b COLLATE nocase);
   579    INSERT INTO t6 VALUES('aa', 'cc');
   580    INSERT INTO t6 VALUES('bb', 'DD');
   581    INSERT INTO t6 VALUES(NULL, NULL);
   582  } {}
   583  foreach {tn select res} {
   584    1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD}
   585    2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {}
   586    3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) } 
   587      {aa cc cc bb DD dd}
   588    4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc}
   589    5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {}
   590  } {
   591    do_join_test e_select-1.6.$tn $select $res
   592  }
   593  
   594  # EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a
   595  # USING clause, the column from the right-hand dataset is omitted from
   596  # the joined dataset.
   597  #
   598  # EVIDENCE-OF: R-56132-15700 This is the only difference between a USING
   599  # clause and its equivalent ON constraint.
   600  #
   601  foreach {tn select res} {
   602    1a { SELECT * FROM t1 %JOIN% t2 USING (a)      } 
   603       {a one I b two II c three III}
   604    1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) }
   605       {a one a I b two b II c three c III}
   606  
   607    2a { SELECT * FROM t3 %JOIN% t4 USING (a)      }  
   608       {a 1 {} b 2 2}
   609    2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) } 
   610       {a 1 a {} b 2 b 2}
   611  
   612    3a { SELECT * FROM t3 %JOIN% t4 USING (a,c)                  } {b 2}
   613    3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2}
   614  
   615    4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 
   616         %JOIN% t5 USING (a) } 
   617       {aa cc cc bb DD dd}
   618    4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
   619         %JOIN% t5 ON (x.a=t5.a) } 
   620       {aa cc AA cc bb DD BB dd}
   621  } {
   622    do_join_test e_select-1.7.$tn $select $res
   623  }
   624  # EVIDENCE-OF: R-42531-52874 If the join-operator is a "LEFT JOIN" or
   625  # "LEFT OUTER JOIN", then after the ON or USING filtering clauses have
   626  # been applied, an extra row is added to the output for each row in the
   627  # original left-hand input dataset that corresponds to no rows at all in
   628  # the composite dataset (if any).
   629  #
   630  do_execsql_test e_select-1.8.0 {
   631    CREATE TABLE t7(a, b, c);
   632    CREATE TABLE t8(a, d, e);
   633  
   634    INSERT INTO t7 VALUES('x', 'ex',  24);
   635    INSERT INTO t7 VALUES('y', 'why', 25);
   636  
   637    INSERT INTO t8 VALUES('x', 'abc', 24);
   638    INSERT INTO t8 VALUES('z', 'ghi', 26);
   639  } {}
   640  
   641  do_select_tests e_select-1.8 {
   642    1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1}
   643    1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2}
   644    2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1}
   645    2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2}
   646  }
   647  
   648  
   649  # EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the
   650  # columns that would normally contain values copied from the right-hand
   651  # input dataset.
   652  #
   653  do_select_tests e_select-1.9 {
   654    1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24}
   655    1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" 
   656       {x ex 24 x abc 24 y why 25 {} {} {}}
   657    2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
   658    2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
   659  }
   660  
   661  # EVIDENCE-OF: R-04932-55942 If the NATURAL keyword is in the
   662  # join-operator then an implicit USING clause is added to the
   663  # join-constraints. The implicit USING clause contains each of the
   664  # column names that appear in both the left and right-hand input
   665  # datasets.
   666  #
   667  do_select_tests e_select-1-10 {
   668    1a "SELECT * FROM t7 JOIN t8 USING (a)"        {x ex 24 abc 24}
   669    1b "SELECT * FROM t7 NATURAL JOIN t8"          {x ex 24 abc 24}
   670  
   671    2a "SELECT * FROM t8 JOIN t7 USING (a)"        {x abc 24 ex 24}
   672    2b "SELECT * FROM t8 NATURAL JOIN t7"          {x abc 24 ex 24}
   673  
   674    3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)"   {x ex 24 abc 24 y why 25 {} {}}
   675    3b "SELECT * FROM t7 NATURAL LEFT JOIN t8"     {x ex 24 abc 24 y why 25 {} {}}
   676  
   677    4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)"   {x abc 24 ex 24 z ghi 26 {} {}}
   678    4b "SELECT * FROM t8 NATURAL LEFT JOIN t7"     {x abc 24 ex 24 z ghi 26 {} {}}
   679  
   680    5a "SELECT * FROM t3 JOIN t4 USING (a,c)"      {b 2}
   681    5b "SELECT * FROM t3 NATURAL JOIN t4"          {b 2}
   682  
   683    6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2}
   684    6b "SELECT * FROM t3 NATURAL LEFT JOIN t4"     {a 1 b 2}
   685  } 
   686  
   687  # EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets
   688  # feature no common column names, then the NATURAL keyword has no effect
   689  # on the results of the join.
   690  #
   691  do_execsql_test e_select-1.11.0 {
   692    CREATE TABLE t10(x, y);
   693    INSERT INTO t10 VALUES(1, 'true');
   694    INSERT INTO t10 VALUES(0, 'false');
   695  } {}
   696  do_select_tests e_select-1-11 {
   697    1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
   698    1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
   699  }
   700  
   701  # EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a
   702  # join that specifies the NATURAL keyword.
   703  #
   704  foreach {tn sql} {
   705    1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)}
   706    2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)}
   707    3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
   708  } {
   709    do_catchsql_test e_select-1.12.$tn "
   710      $sql
   711    " {1 {a NATURAL join may not have an ON or USING clause}}
   712  }
   713  
   714  #-------------------------------------------------------------------------
   715  # The next block of tests - e_select-3.* - concentrate on verifying 
   716  # statements made regarding WHERE clause processing.
   717  #
   718  drop_all_tables
   719  do_execsql_test e_select-3.0 {
   720    CREATE TABLE x1(k, x, y, z);
   721    INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43);
   722    INSERT INTO x1 VALUES(2, X'A8E8D66F',    X'07CF',   -81);
   723    INSERT INTO x1 VALUES(3, -22,            -27.57,    NULL);
   724    INSERT INTO x1 VALUES(4, NULL,           'bygone',  'picky');
   725    INSERT INTO x1 VALUES(5, NULL,           96.28,     NULL);
   726    INSERT INTO x1 VALUES(6, 0,              1,         2);
   727  
   728    CREATE TABLE x2(k, x, y2);
   729    INSERT INTO x2 VALUES(1, 50, X'B82838');
   730    INSERT INTO x2 VALUES(5, 84.79, 65.88);
   731    INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393');
   732    INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized');
   733  } {}
   734  
   735  # EVIDENCE-OF: R-60775-64916 If a WHERE clause is specified, the WHERE
   736  # expression is evaluated for each row in the input data as a boolean
   737  # expression. Only rows for which the WHERE clause expression evaluates
   738  # to true are included from the dataset before continuing.
   739  #
   740  do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x }         {3}
   741  do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y }         {3 5 6}
   742  do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z }         {1 2 6}
   743  do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z    } {1 2 4 6}
   744  do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5}
   745  do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6}
   746  
   747  do_execsql_test e_select-3.2.1a {
   748    SELECT k FROM x1 LEFT JOIN x2 USING(k)
   749  } {1 2 3 4 5 6}
   750  do_execsql_test e_select-3.2.1b {
   751    SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k
   752  } {1 3 5}
   753  do_execsql_test e_select-3.2.2 {
   754    SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL
   755  } {2 4 6}
   756  
   757  do_execsql_test e_select-3.2.3 {
   758    SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k
   759  } {3}
   760  do_execsql_test e_select-3.2.4 {
   761    SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3
   762  } {}
   763  
   764  #-------------------------------------------------------------------------
   765  # Tests below this point are focused on verifying the testable statements
   766  # related to caculating the result rows of a simple SELECT statement.
   767  #
   768  
   769  drop_all_tables
   770  do_execsql_test e_select-4.0 {
   771    CREATE TABLE z1(a, b, c);
   772    CREATE TABLE z2(d, e);
   773    CREATE TABLE z3(a, b);
   774  
   775    INSERT INTO z1 VALUES(51.65, -59.58, 'belfries');
   776    INSERT INTO z1 VALUES(-5, NULL, 75);
   777    INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters');
   778    INSERT INTO z1 VALUES(NULL, 67, 'quartets');
   779    INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen');
   780    INSERT INTO z1 VALUES(63, 'born', -26);
   781  
   782    INSERT INTO z2 VALUES(NULL, 21);
   783    INSERT INTO z2 VALUES(36, 6);
   784  
   785    INSERT INTO z3 VALUES('subsistence', 'gauze');
   786    INSERT INTO z3 VALUES(49.17, -67);
   787  } {}
   788  
   789  # EVIDENCE-OF: R-36327-17224 If a result expression is the special
   790  # expression "*" then all columns in the input data are substituted for
   791  # that one expression.
   792  #
   793  # EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table
   794  # or subquery in the FROM clause followed by ".*" then all columns from
   795  # the named table or subquery are substituted for the single expression.
   796  #
   797  do_select_tests e_select-4.1 {
   798    1  "SELECT * FROM z1 LIMIT 1"             {51.65 -59.58 belfries}
   799    2  "SELECT * FROM z1,z2 LIMIT 1"          {51.65 -59.58 belfries {} 21}
   800    3  "SELECT z1.* FROM z1,z2 LIMIT 1"       {51.65 -59.58 belfries}
   801    4  "SELECT z2.* FROM z1,z2 LIMIT 1"       {{} 21}
   802    5  "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries}
   803  
   804    6  "SELECT count(*), * FROM z1"           {6 63 born -26}
   805    7  "SELECT max(a), * FROM z1"             {63 63 born -26}
   806    8  "SELECT *, min(a) FROM z1"             {-5 {} 75 -5}
   807  
   808    9  "SELECT *,* FROM z1,z2 LIMIT 1" {        
   809       51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21
   810    }
   811    10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" {        
   812       51.65 -59.58 belfries 51.65 -59.58 belfries
   813    }
   814  }
   815  
   816  # EVIDENCE-OF: R-38023-18396 It is an error to use a "*" or "alias.*"
   817  # expression in any context other than a result expression list.
   818  #
   819  # EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or
   820  # "alias.*" expression in a simple SELECT query that does not have a
   821  # FROM clause.
   822  #
   823  foreach {tn select err} {
   824    1.1  "SELECT a, b, c FROM z1 WHERE *"    {near "*": syntax error}
   825    1.2  "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error}
   826    1.3  "SELECT 1 + * FROM z1"              {near "*": syntax error}
   827    1.4  "SELECT * + 1 FROM z1"              {near "+": syntax error}
   828  
   829    2.1 "SELECT *" {no tables specified}
   830    2.2 "SELECT * WHERE 1" {no tables specified}
   831    2.3 "SELECT * WHERE 0" {no tables specified}
   832    2.4 "SELECT count(*), *" {no tables specified}
   833  } {
   834    do_catchsql_test e_select-4.2.$tn $select [list 1 $err]
   835  }
   836  
   837  # EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned
   838  # by a simple SELECT statement is equal to the number of expressions in
   839  # the result expression list after substitution of * and alias.*
   840  # expressions.
   841  #
   842  foreach {tn select nCol} {
   843    1   "SELECT * FROM z1"   3
   844    2   "SELECT * FROM z1 NATURAL JOIN z3"            3
   845    3   "SELECT z1.* FROM z1 NATURAL JOIN z3"         3
   846    4   "SELECT z3.* FROM z1 NATURAL JOIN z3"         2
   847    5   "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3"   5
   848    6   "SELECT 1, 2, z1.* FROM z1"                   5
   849    7   "SELECT a, *, b, c FROM z1"                   6
   850  } {
   851    set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
   852    do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol
   853    sqlite3_finalize $::stmt
   854  }
   855  
   856  
   857  
   858  # In lang_select.html, a non-aggregate query is defined as any simple SELECT
   859  # that has no GROUP BY clause and no aggregate expressions in the result
   860  # expression list. Other queries are aggregate queries. Test cases
   861  # e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of
   862  # simple SELECT that is different for aggregate and non-aggregate queries
   863  # verify (in a way) that these definitions are consistent:
   864  #
   865  # EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate
   866  # query if it contains either a GROUP BY clause or one or more aggregate
   867  # functions in the result-set.
   868  #
   869  # EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no
   870  # aggregate functions or a GROUP BY clause, it is a non-aggregate query.
   871  #
   872  
   873  # EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate
   874  # query, then each expression in the result expression list is evaluated
   875  # for each row in the dataset filtered by the WHERE clause.
   876  #
   877  do_select_tests e_select-4.4 {
   878    1 "SELECT a, b FROM z1"
   879      {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born}
   880  
   881    2 "SELECT a IS NULL, b+1, * FROM z1" {
   882          0 -58.58   51.65 -59.58 belfries
   883          0 {}       -5 {} 75            
   884          0 -22.18   -2.2 -23.18 suiters
   885          1 68       {} 67 quartets    
   886          0 -31.3    -1.04 -32.3 aspen
   887          0 1        63 born -26
   888    }
   889  
   890    3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366}
   891  }
   892  
   893  
   894  # Test cases e_select-4.5.* and e_select-4.6.* together show that:
   895  #
   896  # EVIDENCE-OF: R-51988-01124 The single row of result-set data created
   897  # by evaluating the aggregate and non-aggregate expressions in the
   898  # result-set forms the result of an aggregate query without a GROUP BY
   899  # clause.
   900  #
   901  
   902  # EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate
   903  # query without a GROUP BY clause, then each aggregate expression in the
   904  # result-set is evaluated once across the entire dataset.
   905  #
   906  do_select_tests e_select-4.5 {
   907    1 "SELECT count(a), max(a), count(b), max(b) FROM z1"      {5 63 5 born}
   908    2 "SELECT count(*), max(1)"                                {1 1}
   909  
   910    3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3"           {-43.06}
   911    4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3"           {-38.06}
   912    5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5}
   913  }
   914  
   915  # EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the
   916  # result-set is evaluated once for an arbitrarily selected row of the
   917  # dataset.
   918  #
   919  # EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used
   920  # for each non-aggregate expression.
   921  #
   922  #   Note: The results of many of the queries in this block of tests are
   923  #   technically undefined, as the documentation does not specify which row
   924  #   SQLite will arbitrarily select to use for the evaluation of the
   925  #   non-aggregate expressions.
   926  #
   927  drop_all_tables
   928  do_execsql_test e_select-4.6.0 {
   929    CREATE TABLE a1(one PRIMARY KEY, two);
   930    INSERT INTO a1 VALUES(1, 1);
   931    INSERT INTO a1 VALUES(2, 3);
   932    INSERT INTO a1 VALUES(3, 6);
   933    INSERT INTO a1 VALUES(4, 10);
   934  
   935    CREATE TABLE a2(one PRIMARY KEY, three);
   936    INSERT INTO a2 VALUES(1, 1);
   937    INSERT INTO a2 VALUES(3, 2);
   938    INSERT INTO a2 VALUES(6, 3);
   939    INSERT INTO a2 VALUES(10, 4);
   940  } {}
   941  do_select_tests e_select-4.6 {
   942    1 "SELECT one, two, count(*) FROM a1"                        {4 10 4} 
   943    2 "SELECT one, two, count(*) FROM a1 WHERE one<3"            {2 3 2} 
   944    3 "SELECT one, two, count(*) FROM a1 WHERE one>3"            {4 10 1} 
   945    4 "SELECT *, count(*) FROM a1 JOIN a2"                       {4 10 10 4 16} 
   946    5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
   947    6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
   948    7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 3 6}
   949  }
   950  
   951  # EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then
   952  # each non-aggregate expression is evaluated against a row consisting
   953  # entirely of NULL values.
   954  #
   955  do_select_tests e_select-4.7 {
   956    1  "SELECT one, two, count(*) FROM a1 WHERE 0"           {{} {} 0}
   957    2  "SELECT sum(two), * FROM a1, a2 WHERE three>5"        {{} {} {} {} {}}
   958    3  "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" {
   959      1 1 1
   960    }
   961  } 
   962  
   963  # EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY
   964  # clause always returns exactly one row of data, even if there are zero
   965  # rows of input data.
   966  #
   967  foreach {tn select} {
   968    8.1  "SELECT count(*) FROM a1"
   969    8.2  "SELECT count(*) FROM a1 WHERE 0"
   970    8.3  "SELECT count(*) FROM a1 WHERE 1"
   971    8.4  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1"
   972    8.5  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0"
   973  } {
   974    # Set $nRow to the number of rows returned by $select:
   975    set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
   976    set nRow 0
   977    while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow }
   978    set rc [sqlite3_finalize $::stmt]
   979  
   980    # Test that $nRow==1 and that statement execution was successful 
   981    # (rc==SQLITE_OK).
   982    do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1}
   983  }
   984  
   985  drop_all_tables
   986  do_execsql_test e_select-4.9.0 {
   987    CREATE TABLE b1(one PRIMARY KEY, two);
   988    INSERT INTO b1 VALUES(1, 'o');
   989    INSERT INTO b1 VALUES(4, 'f');
   990    INSERT INTO b1 VALUES(3, 't');
   991    INSERT INTO b1 VALUES(2, 't');
   992    INSERT INTO b1 VALUES(5, 'f');
   993    INSERT INTO b1 VALUES(7, 's');
   994    INSERT INTO b1 VALUES(6, 's');
   995  
   996    CREATE TABLE b2(x, y);
   997    INSERT INTO b2 VALUES(NULL, 0);
   998    INSERT INTO b2 VALUES(NULL, 1);
   999    INSERT INTO b2 VALUES('xyz', 2);
  1000    INSERT INTO b2 VALUES('abc', 3);
  1001    INSERT INTO b2 VALUES('xyz', 4);
  1002  
  1003    CREATE TABLE b3(a COLLATE nocase, b COLLATE binary);
  1004    INSERT INTO b3 VALUES('abc', 'abc');
  1005    INSERT INTO b3 VALUES('aBC', 'aBC');
  1006    INSERT INTO b3 VALUES('Def', 'Def');
  1007    INSERT INTO b3 VALUES('dEF', 'dEF');
  1008  } {}
  1009  
  1010  # EVIDENCE-OF: R-07284-35990 If the SELECT statement is an aggregate
  1011  # query with a GROUP BY clause, then each of the expressions specified
  1012  # as part of the GROUP BY clause is evaluated for each row of the
  1013  # dataset. Each row is then assigned to a "group" based on the results;
  1014  # rows for which the results of evaluating the GROUP BY expressions are
  1015  # the same get assigned to the same group.
  1016  #
  1017  #   These tests also show that the following is not untrue:
  1018  #
  1019  # EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do
  1020  # not have to be expressions that appear in the result.
  1021  #
  1022  do_select_tests e_select-4.9 {
  1023    1  "SELECT group_concat(one), two FROM b1 GROUP BY two" {
  1024      /#,# f   1 o   #,#   s #,# t/
  1025    }
  1026    2  "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" {
  1027      1,2,3,4 10    5,6,7 18
  1028    }
  1029    3  "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" {
  1030      4  1,5    2,6   3,7
  1031    }
  1032    4  "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" {
  1033      4,3,5,7,6    1,2
  1034    }
  1035  }
  1036  
  1037  # EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL
  1038  # values are considered equal.
  1039  #
  1040  do_select_tests e_select-4.10 {
  1041    1  "SELECT group_concat(y) FROM b2 GROUP BY x" {/#,#   3   #,#/}
  1042    2  "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1}
  1043  } 
  1044  
  1045  # EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation
  1046  # sequence with which to compare text values apply when evaluating
  1047  # expressions in a GROUP BY clause.
  1048  #
  1049  do_select_tests e_select-4.11 {
  1050    1  "SELECT count(*) FROM b3 GROUP BY b"      {1 1 1 1}
  1051    2  "SELECT count(*) FROM b3 GROUP BY a"      {2 2}
  1052    3  "SELECT count(*) FROM b3 GROUP BY +b"     {1 1 1 1}
  1053    4  "SELECT count(*) FROM b3 GROUP BY +a"     {2 2}
  1054    5  "SELECT count(*) FROM b3 GROUP BY b||''"  {1 1 1 1}
  1055    6  "SELECT count(*) FROM b3 GROUP BY a||''"  {1 1 1 1}
  1056  }
  1057  
  1058  # EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may
  1059  # not be aggregate expressions.
  1060  #
  1061  foreach {tn select} {
  1062    12.1  "SELECT * FROM b3 GROUP BY count(*)"
  1063    12.2  "SELECT max(a) FROM b3 GROUP BY max(b)"
  1064    12.3  "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)"
  1065  } {
  1066    set res {1 {aggregate functions are not allowed in the GROUP BY clause}}
  1067    do_catchsql_test e_select-4.$tn $select $res
  1068  }
  1069  
  1070  # EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is
  1071  # evaluated once for each group of rows as a boolean expression. If the
  1072  # result of evaluating the HAVING clause is false, the group is
  1073  # discarded.
  1074  #
  1075  #   This requirement is tested by all e_select-4.13.* tests.
  1076  #
  1077  # EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate
  1078  # expression, it is evaluated across all rows in the group.
  1079  #
  1080  #   Tested by e_select-4.13.1.*
  1081  #
  1082  # EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate
  1083  # expression, it is evaluated with respect to an arbitrarily selected
  1084  # row from the group.
  1085  #
  1086  #   Tested by e_select-4.13.2.*
  1087  #
  1088  #   Tests in this block also show that this is not untrue:
  1089  #
  1090  # EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values,
  1091  # even aggregate functions, that are not in the result.
  1092  #
  1093  do_execsql_test e_select-4.13.0 {
  1094    CREATE TABLE c1(up, down);
  1095    INSERT INTO c1 VALUES('x', 1);
  1096    INSERT INTO c1 VALUES('x', 2);
  1097    INSERT INTO c1 VALUES('x', 4);
  1098    INSERT INTO c1 VALUES('x', 8);
  1099    INSERT INTO c1 VALUES('y', 16);
  1100    INSERT INTO c1 VALUES('y', 32);
  1101  
  1102    CREATE TABLE c2(i, j);
  1103    INSERT INTO c2 VALUES(1, 0);
  1104    INSERT INTO c2 VALUES(2, 1);
  1105    INSERT INTO c2 VALUES(3, 3);
  1106    INSERT INTO c2 VALUES(4, 6);
  1107    INSERT INTO c2 VALUES(5, 10);
  1108    INSERT INTO c2 VALUES(6, 15);
  1109    INSERT INTO c2 VALUES(7, 21);
  1110    INSERT INTO c2 VALUES(8, 28);
  1111    INSERT INTO c2 VALUES(9, 36);
  1112  
  1113    CREATE TABLE c3(i PRIMARY KEY, k TEXT);
  1114    INSERT INTO c3 VALUES(1,  'hydrogen');
  1115    INSERT INTO c3 VALUES(2,  'helium');
  1116    INSERT INTO c3 VALUES(3,  'lithium');
  1117    INSERT INTO c3 VALUES(4,  'beryllium');
  1118    INSERT INTO c3 VALUES(5,  'boron');
  1119    INSERT INTO c3 VALUES(94, 'plutonium');
  1120  } {}
  1121  
  1122  do_select_tests e_select-4.13 {
  1123    1.1  "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x}
  1124    1.2  "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y}
  1125    1.3  "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x}
  1126    1.4  "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4}
  1127  
  1128    2.1  "SELECT up FROM c1 GROUP BY up HAVING down>10" {y}
  1129    2.2  "SELECT up FROM c1 GROUP BY up HAVING up='y'"  {y}
  1130  
  1131    2.3  "SELECT i, j FROM c2 GROUP BY i>4 HAVING i>6"  {9 36}
  1132  }
  1133  
  1134  # EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then
  1135  # evaluated once for each group of rows.
  1136  #
  1137  # EVIDENCE-OF: R-53735-47017 If the expression is an aggregate
  1138  # expression, it is evaluated across all rows in the group.
  1139  #
  1140  do_select_tests e_select-4.15 {
  1141    1  "SELECT sum(down) FROM c1 GROUP BY up" {15 48}
  1142    2  "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)"     {54 36 27 21 39 28}
  1143    3  "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)"     {80 36 40 21}
  1144    4  "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22}
  1145    5  "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2"
  1146          {3 4.33 1 2.0}
  1147  } 
  1148  
  1149  # EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single
  1150  # arbitrarily chosen row from within the group.
  1151  #
  1152  # EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate
  1153  # expression in the result-set, then all such expressions are evaluated
  1154  # for the same row.
  1155  #
  1156  do_select_tests e_select-4.15 {
  1157    1  "SELECT i, j FROM c2 GROUP BY i%2"             {8 28   9 36}
  1158    2  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {8 28}
  1159    3  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
  1160    4  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
  1161    5  "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)"
  1162          {2 5 boron   2 2 helium   1 3 lithium}
  1163  } 
  1164  
  1165  # EVIDENCE-OF: R-19334-12811 Each group of input dataset rows
  1166  # contributes a single row to the set of result rows.
  1167  #
  1168  # EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the
  1169  # DISTINCT keyword, the number of rows returned by an aggregate query
  1170  # with a GROUP BY clause is the same as the number of groups of rows
  1171  # produced by applying the GROUP BY and HAVING clauses to the filtered
  1172  # input dataset.
  1173  #
  1174  do_select_tests e_select.4.16 -count {
  1175    1  "SELECT i, j FROM c2 GROUP BY i%2"          2
  1176    2  "SELECT i, j FROM c2 GROUP BY i"            9
  1177    3  "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4
  1178  } 
  1179  
  1180  #-------------------------------------------------------------------------
  1181  # The following tests attempt to verify statements made regarding the ALL
  1182  # and DISTINCT keywords.
  1183  #
  1184  drop_all_tables
  1185  do_execsql_test e_select-5.1.0 {
  1186    CREATE TABLE h1(a, b);
  1187    INSERT INTO h1 VALUES(1, 'one');
  1188    INSERT INTO h1 VALUES(1, 'I');
  1189    INSERT INTO h1 VALUES(1, 'i');
  1190    INSERT INTO h1 VALUES(4, 'four');
  1191    INSERT INTO h1 VALUES(4, 'IV');
  1192    INSERT INTO h1 VALUES(4, 'iv');
  1193  
  1194    CREATE TABLE h2(x COLLATE nocase);
  1195    INSERT INTO h2 VALUES('One');
  1196    INSERT INTO h2 VALUES('Two');
  1197    INSERT INTO h2 VALUES('Three');
  1198    INSERT INTO h2 VALUES('Four');
  1199    INSERT INTO h2 VALUES('one');
  1200    INSERT INTO h2 VALUES('two');
  1201    INSERT INTO h2 VALUES('three');
  1202    INSERT INTO h2 VALUES('four');
  1203  
  1204    CREATE TABLE h3(c, d);
  1205    INSERT INTO h3 VALUES(1, NULL);
  1206    INSERT INTO h3 VALUES(2, NULL);
  1207    INSERT INTO h3 VALUES(3, NULL);
  1208    INSERT INTO h3 VALUES(4, '2');
  1209    INSERT INTO h3 VALUES(5, NULL);
  1210    INSERT INTO h3 VALUES(6, '2,3');
  1211    INSERT INTO h3 VALUES(7, NULL);
  1212    INSERT INTO h3 VALUES(8, '2,4');
  1213    INSERT INTO h3 VALUES(9, '3');
  1214  } {}
  1215  
  1216  # EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may
  1217  # follow the SELECT keyword in a simple SELECT statement.
  1218  #
  1219  do_select_tests e_select-5.1 {
  1220    1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
  1221    2   "SELECT DISTINCT a FROM h1" {1 4}
  1222  }
  1223  
  1224  # EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
  1225  # the entire set of result rows are returned by the SELECT.
  1226  #
  1227  # EVIDENCE-OF: R-01256-01950 If neither ALL or DISTINCT are present,
  1228  # then the behavior is as if ALL were specified.
  1229  #
  1230  # EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
  1231  # then duplicate rows are removed from the set of result rows before it
  1232  # is returned.
  1233  #
  1234  #   The three testable statements above are tested by e_select-5.2.*,
  1235  #   5.3.* and 5.4.* respectively.
  1236  #
  1237  do_select_tests e_select-5 {
  1238    3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
  1239    3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}
  1240  
  1241    3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
  1242    3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}
  1243  
  1244    4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four}
  1245    4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four}
  1246  } 
  1247  
  1248  # EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
  1249  # rows, two NULL values are considered to be equal.
  1250  #
  1251  do_select_tests e_select-5.5 {
  1252    1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
  1253  }
  1254  
  1255  # EVIDENCE-OF: R-47709-27231 The usual rules apply for selecting a
  1256  # collation sequence to compare text values.
  1257  #
  1258  do_select_tests e_select-5.6 {
  1259    1  "SELECT DISTINCT b FROM h1"                  {one I i four IV iv}
  1260    2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {one I four IV}
  1261    3  "SELECT DISTINCT x FROM h2"                  {One Two Three Four}
  1262    4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
  1263      One Two Three Four one two three four
  1264    }
  1265  }
  1266  
  1267  #-------------------------------------------------------------------------
  1268  # The following tests - e_select-7.* - test that statements made to do
  1269  # with compound SELECT statements are correct.
  1270  #
  1271  
  1272  # EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent
  1273  # SELECTs must return the same number of result columns.
  1274  #
  1275  #   All the other tests in this section use compound SELECTs created
  1276  #   using component SELECTs that do return the same number of columns.
  1277  #   So the tests here just show that it is an error to attempt otherwise.
  1278  #
  1279  drop_all_tables
  1280  do_execsql_test e_select-7.1.0 {
  1281    CREATE TABLE j1(a, b, c);
  1282    CREATE TABLE j2(e, f);
  1283    CREATE TABLE j3(g);
  1284  } {}
  1285  do_select_tests e_select-7.1 -error {
  1286    SELECTs to the left and right of %s do not have the same number of result columns
  1287  } {
  1288    1   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
  1289    2   "SELECT *    FROM j1    UNION ALL SELECT * FROM j3"    {{UNION ALL}}
  1290    3   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
  1291    4   "SELECT a, b FROM j1    UNION ALL SELECT * FROM j3,j2" {{UNION ALL}}
  1292    5   "SELECT *    FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}}
  1293  
  1294    6   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
  1295    7   "SELECT *    FROM j1    UNION SELECT * FROM j3"        {UNION}
  1296    8   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
  1297    9   "SELECT a, b FROM j1    UNION SELECT * FROM j3,j2"     {UNION}
  1298    10  "SELECT *    FROM j3,j2 UNION SELECT a, b FROM j1"     {UNION}
  1299  
  1300    11  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
  1301    12  "SELECT *    FROM j1    INTERSECT SELECT * FROM j3"    {INTERSECT}
  1302    13  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
  1303    14  "SELECT a, b FROM j1    INTERSECT SELECT * FROM j3,j2" {INTERSECT}
  1304    15  "SELECT *    FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT}
  1305  
  1306    16  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
  1307    17  "SELECT *    FROM j1    EXCEPT SELECT * FROM j3"       {EXCEPT}
  1308    18  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
  1309    19  "SELECT a, b FROM j1    EXCEPT SELECT * FROM j3,j2"    {EXCEPT}
  1310    20  "SELECT *    FROM j3,j2 EXCEPT SELECT a, b FROM j1"    {EXCEPT}
  1311  } 
  1312  
  1313  # EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must
  1314  # be simple SELECT statements, they may not contain ORDER BY or LIMIT
  1315  # clauses.
  1316  # 
  1317  foreach {tn select op1 op2} {
  1318    1   "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3" 
  1319        {ORDER BY} {UNION ALL}
  1320    2   "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2"
  1321        {ORDER BY} {UNION ALL}
  1322    3   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2"
  1323        {ORDER BY} {UNION ALL}
  1324    4   "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3" 
  1325        LIMIT {UNION ALL}
  1326    5   "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3" 
  1327        LIMIT {UNION ALL}
  1328    6   "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3" 
  1329        LIMIT {UNION ALL}
  1330  
  1331    7   "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3" 
  1332        {ORDER BY} {UNION}
  1333    8   "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2"
  1334        {ORDER BY} {UNION}
  1335    9   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2"
  1336        {ORDER BY} {UNION}
  1337    10  "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3" 
  1338        LIMIT {UNION}
  1339    11  "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3" 
  1340        LIMIT {UNION}
  1341    12  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3" 
  1342        LIMIT {UNION}
  1343  
  1344    13  "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3" 
  1345        {ORDER BY} {EXCEPT}
  1346    14  "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2"
  1347        {ORDER BY} {EXCEPT}
  1348    15  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2"
  1349        {ORDER BY} {EXCEPT}
  1350    16  "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3" 
  1351        LIMIT {EXCEPT}
  1352    17  "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3" 
  1353        LIMIT {EXCEPT}
  1354    18  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3" 
  1355        LIMIT {EXCEPT}
  1356  
  1357    19  "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3" 
  1358        {ORDER BY} {INTERSECT}
  1359    20  "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2"
  1360        {ORDER BY} {INTERSECT}
  1361    21  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2"
  1362        {ORDER BY} {INTERSECT}
  1363    22  "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3" 
  1364        LIMIT {INTERSECT}
  1365    23  "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3" 
  1366        LIMIT {INTERSECT}
  1367    24  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3" 
  1368        LIMIT {INTERSECT}
  1369  } {
  1370    set err "$op1 clause should come after $op2 not before"
  1371    do_catchsql_test e_select-7.2.$tn $select [list 1 $err]
  1372  }
  1373  
  1374  # EVIDENCE-OF: R-45440-25633 ORDER BY and LIMIT clauses may only occur
  1375  # at the end of the entire compound SELECT, and then only if the final
  1376  # element of the compound is not a VALUES clause.
  1377  #
  1378  foreach {tn select} {
  1379    1   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a"
  1380    2   "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1"
  1381    3   "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3"
  1382    4   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10" 
  1383    5   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  1384    6   "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
  1385  
  1386    7   "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a"
  1387    8   "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1"
  1388    8b  "VALUES('8b') UNION SELECT max(e) FROM j2 ORDER BY 1"
  1389    9   "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3"
  1390    10  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10" 
  1391    11  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  1392    12  "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
  1393  
  1394    13  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a"
  1395    14  "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1"
  1396    15  "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3"
  1397    16  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10" 
  1398    17  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  1399    18  "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
  1400  
  1401    19  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a"
  1402    20  "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1"
  1403    21  "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3"
  1404    22  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10" 
  1405    23  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  1406    24  "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
  1407  } {
  1408    do_test e_select-7.3.$tn { catch {execsql $select} msg } 0
  1409  }
  1410  foreach {tn select} {
  1411    50   "SELECT * FROM j1 ORDER BY 1 UNION ALL SELECT * FROM j2,j3"
  1412    51   "SELECT * FROM j1 LIMIT 1 UNION ALL SELECT * FROM j2,j3"
  1413    52   "SELECT count(*) FROM j1 UNION ALL VALUES(11) ORDER BY 1"
  1414    53   "SELECT count(*) FROM j1 UNION ALL VALUES(11) LIMIT 1"
  1415  } {
  1416    do_test e_select-7.3.$tn { catch {execsql $select} msg } 1
  1417  }
  1418  
  1419  # EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL
  1420  # operator returns all the rows from the SELECT to the left of the UNION
  1421  # ALL operator, and all the rows from the SELECT to the right of it.
  1422  #
  1423  drop_all_tables
  1424  do_execsql_test e_select-7.4.0 {
  1425    CREATE TABLE q1(a TEXT, b INTEGER, c);
  1426    CREATE TABLE q2(d NUMBER, e BLOB);
  1427    CREATE TABLE q3(f REAL, g);
  1428  
  1429    INSERT INTO q1 VALUES(16, -87.66, NULL);
  1430    INSERT INTO q1 VALUES('legible', 94, -42.47);
  1431    INSERT INTO q1 VALUES('beauty', 36, NULL);
  1432  
  1433    INSERT INTO q2 VALUES('legible', 1);
  1434    INSERT INTO q2 VALUES('beauty', 2);
  1435    INSERT INTO q2 VALUES(-65.91, 4);
  1436    INSERT INTO q2 VALUES('emanating', -16.56);
  1437  
  1438    INSERT INTO q3 VALUES('beauty', 2);
  1439    INSERT INTO q3 VALUES('beauty', 2);
  1440  } {}
  1441  do_select_tests e_select-7.4 {
  1442    1   {SELECT a FROM q1 UNION ALL SELECT d FROM q2}
  1443        {16 legible beauty legible beauty -65.91 emanating}
  1444  
  1445    2   {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1}
  1446        {16 -87.66 {} x legible 1}
  1447  
  1448    3   {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2} 
  1449        {3 -16.56}
  1450  
  1451    4   {SELECT * FROM q2 UNION ALL SELECT * FROM q3} 
  1452        {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2}
  1453  } 
  1454  
  1455  # EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as
  1456  # UNION ALL, except that duplicate rows are removed from the final
  1457  # result set.
  1458  #
  1459  do_select_tests e_select-7.5 {
  1460    1   {SELECT a FROM q1 UNION SELECT d FROM q2}
  1461        {-65.91 16 beauty emanating legible}
  1462  
  1463    2   {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1}
  1464        {16 -87.66 {} x legible 1}
  1465  
  1466    3   {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2} 
  1467        {-16.56 3}
  1468  
  1469    4   {SELECT * FROM q2 UNION SELECT * FROM q3} 
  1470        {-65.91 4 beauty 2 emanating -16.56 legible 1}
  1471  } 
  1472  
  1473  # EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the
  1474  # intersection of the results of the left and right SELECTs.
  1475  #
  1476  do_select_tests e_select-7.6 {
  1477    1   {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible}
  1478    2   {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2}
  1479  }
  1480  
  1481  # EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of
  1482  # rows returned by the left SELECT that are not also returned by the
  1483  # right-hand SELECT.
  1484  #
  1485  do_select_tests e_select-7.7 {
  1486    1   {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16}
  1487  
  1488    2   {SELECT * FROM q2 EXCEPT SELECT * FROM q3} 
  1489        {-65.91 4 emanating -16.56 legible 1}
  1490  }
  1491  
  1492  # EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results
  1493  # of INTERSECT and EXCEPT operators before the result set is returned.
  1494  #
  1495  do_select_tests e_select-7.8 {
  1496    0   {SELECT * FROM q3} {beauty 2 beauty 2}
  1497  
  1498    1   {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2}
  1499    2   {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1}  {beauty 2}
  1500  }
  1501  
  1502  # EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate
  1503  # rows for the results of compound SELECT operators, NULL values are
  1504  # considered equal to other NULL values and distinct from all non-NULL
  1505  # values.
  1506  #
  1507  db nullvalue null
  1508  do_select_tests e_select-7.9 {
  1509    1   {SELECT NULL UNION ALL SELECT NULL} {null null}
  1510    2   {SELECT NULL UNION     SELECT NULL} {null}
  1511    3   {SELECT NULL INTERSECT SELECT NULL} {null}
  1512    4   {SELECT NULL EXCEPT    SELECT NULL} {}
  1513  
  1514    5   {SELECT NULL UNION ALL SELECT 'ab'} {null ab}
  1515    6   {SELECT NULL UNION     SELECT 'ab'} {null ab}
  1516    7   {SELECT NULL INTERSECT SELECT 'ab'} {}
  1517    8   {SELECT NULL EXCEPT    SELECT 'ab'} {null}
  1518  
  1519    9   {SELECT NULL UNION ALL SELECT 0} {null 0}
  1520    10  {SELECT NULL UNION     SELECT 0} {null 0}
  1521    11  {SELECT NULL INTERSECT SELECT 0} {}
  1522    12  {SELECT NULL EXCEPT    SELECT 0} {null}
  1523  
  1524    13  {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2}
  1525    14  {SELECT c FROM q1 UNION     SELECT g FROM q3} {null -42.47 2}
  1526    15  {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {}
  1527    16  {SELECT c FROM q1 EXCEPT    SELECT g FROM q3} {null -42.47}
  1528  }
  1529  db nullvalue {} 
  1530  
  1531  # EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two
  1532  # text values is determined as if the columns of the left and right-hand
  1533  # SELECT statements were the left and right-hand operands of the equals
  1534  # (=) operator, except that greater precedence is not assigned to a
  1535  # collation sequence specified with the postfix COLLATE operator.
  1536  #
  1537  drop_all_tables
  1538  do_execsql_test e_select-7.10.0 {
  1539    CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c);
  1540    INSERT INTO y1 VALUES('Abc', 'abc', 'aBC');
  1541  } {}
  1542  do_select_tests e_select-7.10 {
  1543    1   {SELECT 'abc'                UNION SELECT 'ABC'} {ABC abc}
  1544    2   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC}
  1545    3   {SELECT 'abc'                UNION SELECT 'ABC' COLLATE nocase} {ABC}
  1546    4   {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc}
  1547    5   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC}
  1548  
  1549    6   {SELECT a FROM y1 UNION SELECT b FROM y1}                {abc}
  1550    7   {SELECT b FROM y1 UNION SELECT a FROM y1}                {Abc abc}
  1551    8   {SELECT a FROM y1 UNION SELECT c FROM y1}                {aBC}
  1552  
  1553    9   {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC}
  1554  }
  1555  
  1556  # EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to
  1557  # any values when comparing rows as part of a compound SELECT.
  1558  #
  1559  drop_all_tables
  1560  do_execsql_test e_select-7.10.0 {
  1561    CREATE TABLE w1(a TEXT, b NUMBER);
  1562    CREATE TABLE w2(a, b TEXT);
  1563  
  1564    INSERT INTO w1 VALUES('1', 4.1);
  1565    INSERT INTO w2 VALUES(1, 4.1);
  1566  } {}
  1567  
  1568  do_select_tests e_select-7.11 {
  1569    1  { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1}
  1570    2  { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1}
  1571    3  { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1}
  1572    4  { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1}
  1573  
  1574    5  { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {}
  1575    6  { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {}
  1576    7  { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {}
  1577    8  { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {}
  1578  
  1579    9  { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1}
  1580    10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1}
  1581    11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1}
  1582    12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1}
  1583  }
  1584  
  1585  
  1586  # EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are
  1587  # connected into a compound SELECT, they group from left to right. In
  1588  # other words, if "A", "B" and "C" are all simple SELECT statements, (A
  1589  # op B op C) is processed as ((A op B) op C).
  1590  #
  1591  #   e_select-7.12.1: Precedence of UNION vs. INTERSECT 
  1592  #   e_select-7.12.2: Precedence of UNION vs. UNION ALL 
  1593  #   e_select-7.12.3: Precedence of UNION vs. EXCEPT
  1594  #   e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL 
  1595  #   e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT
  1596  #   e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT
  1597  #   e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as 
  1598  #                   "(a EXCEPT b) EXCEPT c".
  1599  #
  1600  # The INTERSECT and EXCEPT operations are mutually commutative. So
  1601  # the e_select-7.12.5 test cases do not prove very much.
  1602  #
  1603  drop_all_tables
  1604  do_execsql_test e_select-7.12.0 {
  1605    CREATE TABLE t1(x);
  1606    INSERT INTO t1 VALUES(1);
  1607    INSERT INTO t1 VALUES(2);
  1608    INSERT INTO t1 VALUES(3);
  1609  } {}
  1610  foreach {tn select res} {
  1611    1a "(1,2) INTERSECT (1)   UNION     (3)"   {1 3}
  1612    1b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
  1613  
  1614    2a "(1,2) UNION     (3)   UNION ALL (1)"   {1 2 3 1}
  1615    2b "(1)   UNION ALL (3)   UNION     (1,2)" {1 2 3}
  1616  
  1617    3a "(1,2) UNION     (3)   EXCEPT    (1)"   {2 3}
  1618    3b "(1,2) EXCEPT    (3)   UNION     (1)"   {1 2}
  1619  
  1620    4a "(1,2) INTERSECT (1)   UNION ALL (3)"   {1 3}
  1621    4b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
  1622  
  1623    5a "(1,2) INTERSECT (2)   EXCEPT    (2)"   {}
  1624    5b "(2,3) EXCEPT    (2)   INTERSECT (2)"   {}
  1625  
  1626    6a "(2)   UNION ALL (2)   EXCEPT    (2)"   {}
  1627    6b "(2)   EXCEPT    (2)   UNION ALL (2)"   {2}
  1628  
  1629    7  "(2,3) EXCEPT    (2)   EXCEPT    (3)"   {}
  1630  } {
  1631    set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select]
  1632    do_execsql_test e_select-7.12.$tn $select [list {*}$res]
  1633  }
  1634  
  1635  
  1636  #-------------------------------------------------------------------------
  1637  # ORDER BY clauses
  1638  #
  1639  
  1640  drop_all_tables
  1641  do_execsql_test e_select-8.1.0 {
  1642    CREATE TABLE d1(x, y, z);
  1643  
  1644    INSERT INTO d1 VALUES(1, 2, 3);
  1645    INSERT INTO d1 VALUES(2, 5, -1);
  1646    INSERT INTO d1 VALUES(1, 2, 8);
  1647    INSERT INTO d1 VALUES(1, 2, 7);
  1648    INSERT INTO d1 VALUES(2, 4, 93);
  1649    INSERT INTO d1 VALUES(1, 2, -20);
  1650    INSERT INTO d1 VALUES(1, 4, 93);
  1651    INSERT INTO d1 VALUES(1, 5, -1);
  1652  
  1653    CREATE TABLE d2(a, b);
  1654    INSERT INTO d2 VALUES('gently', 'failings');
  1655    INSERT INTO d2 VALUES('commercials', 'bathrobe');
  1656    INSERT INTO d2 VALUES('iterate', 'sexton');
  1657    INSERT INTO d2 VALUES('babied', 'charitableness');
  1658    INSERT INTO d2 VALUES('solemnness', 'annexed');
  1659    INSERT INTO d2 VALUES('rejoicing', 'liabilities');
  1660    INSERT INTO d2 VALUES('pragmatist', 'guarded');
  1661    INSERT INTO d2 VALUES('barked', 'interrupted');
  1662    INSERT INTO d2 VALUES('reemphasizes', 'reply');
  1663    INSERT INTO d2 VALUES('lad', 'relenting');
  1664  } {}
  1665  
  1666  # EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results
  1667  # of evaluating the left-most expression in the ORDER BY list, then ties
  1668  # are broken by evaluating the second left-most expression and so on.
  1669  #
  1670  do_select_tests e_select-8.1 {
  1671    1  "SELECT * FROM d1 ORDER BY x, y, z" {
  1672       1 2 -20    1 2 3    1 2 7    1 2 8    
  1673       1 4  93    1 5 -1   2 4 93   2 5 -1
  1674    }
  1675  }
  1676  
  1677  # EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally
  1678  # followed by one of the keywords ASC (smaller values are returned
  1679  # first) or DESC (larger values are returned first).
  1680  #
  1681  #   Test cases e_select-8.2.* test the above.
  1682  #
  1683  # EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows
  1684  # are sorted in ascending (smaller values first) order by default.
  1685  #
  1686  #   Test cases e_select-8.3.* test the above. All 8.3 test cases are
  1687  #   copies of 8.2 test cases with the explicit "ASC" removed.
  1688  #
  1689  do_select_tests e_select-8 {
  1690    2.1  "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" {
  1691       1 2 -20    1 2 3    1 2 7    1 2 8    
  1692       1 4  93    1 5 -1   2 4 93   2 5 -1
  1693    }
  1694    2.2  "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" {
  1695       2 5 -1     2 4 93   1 5 -1   1 4  93    
  1696       1 2 8      1 2 7    1 2 3    1 2 -20    
  1697    }
  1698    2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" {
  1699       2 4 93   2 5 -1     1 2 8      1 2 7    
  1700       1 2 3    1 2 -20    1 4  93    1 5 -1   
  1701    }
  1702    2.4  "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" {
  1703       2 4 93   2 5 -1     1 2 -20    1 2 3    
  1704       1 2 7    1 2 8      1 4  93    1 5 -1   
  1705    }
  1706  
  1707    3.1  "SELECT * FROM d1 ORDER BY x, y, z" {
  1708       1 2 -20    1 2 3    1 2 7    1 2 8    
  1709       1 4  93    1 5 -1   2 4 93   2 5 -1
  1710    }
  1711    3.3  "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" {
  1712       2 4 93   2 5 -1     1 2 8      1 2 7    
  1713       1 2 3    1 2 -20    1 4  93    1 5 -1   
  1714    }
  1715    3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" {
  1716       2 4 93   2 5 -1     1 2 -20    1 2 3    
  1717       1 2 7    1 2 8      1 4  93    1 5 -1   
  1718    }
  1719  }
  1720  
  1721  # EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant
  1722  # integer K then the expression is considered an alias for the K-th
  1723  # column of the result set (columns are numbered from left to right
  1724  # starting with 1).
  1725  #
  1726  do_select_tests e_select-8.4 {
  1727    1  "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" {
  1728       1 2 -20    1 2 3    1 2 7    1 2 8    
  1729       1 4  93    1 5 -1   2 4 93   2 5 -1
  1730    }
  1731    2  "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" {
  1732       2 5 -1     2 4 93   1 5 -1   1 4  93    
  1733       1 2 8      1 2 7    1 2 3    1 2 -20    
  1734    }
  1735    3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" {
  1736       2 4 93   2 5 -1     1 2 8      1 2 7    
  1737       1 2 3    1 2 -20    1 4  93    1 5 -1   
  1738    }
  1739    4  "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" {
  1740       2 4 93   2 5 -1     1 2 -20    1 2 3    
  1741       1 2 7    1 2 8      1 4  93    1 5 -1   
  1742    }
  1743    5  "SELECT * FROM d1 ORDER BY 1, 2, 3" {
  1744       1 2 -20    1 2 3    1 2 7    1 2 8    
  1745       1 4  93    1 5 -1   2 4 93   2 5 -1
  1746    }
  1747    6  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" {
  1748       2 4 93   2 5 -1     1 2 8      1 2 7    
  1749       1 2 3    1 2 -20    1 4  93    1 5 -1   
  1750    }
  1751    7  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" {
  1752       2 4 93   2 5 -1     1 2 -20    1 2 3    
  1753       1 2 7    1 2 8      1 4  93    1 5 -1   
  1754    }
  1755    8  "SELECT z, x FROM d1 ORDER BY 2" {
  1756       /# 1    # 1    # 1   # 1 
  1757        # 1    # 1    # 2   # 2/
  1758    }
  1759    9  "SELECT z, x FROM d1 ORDER BY 1" {
  1760       /-20 1  -1 #   -1 #   3 1
  1761       7 1     8 1   93 #   93 #/   
  1762    }
  1763  }
  1764  
  1765  # EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier
  1766  # that corresponds to the alias of one of the output columns, then the
  1767  # expression is considered an alias for that column.
  1768  #
  1769  do_select_tests e_select-8.5 {
  1770    1   "SELECT z+1 AS abc FROM d1 ORDER BY abc" {
  1771      -19 0 0 4 8 9 94 94
  1772    }
  1773    2   "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" {
  1774      94 94 9 8 4 0 0 -19
  1775    }
  1776    3  "SELECT z AS x, x AS z FROM d1 ORDER BY z" {
  1777      /# 1    # 1    # 1    # 1    # 1    # 1    # 2    # 2/
  1778    }
  1779    4  "SELECT z AS x, x AS z FROM d1 ORDER BY x" {
  1780      /-20 1    -1 #    -1 #    3 1    7 1    8 1    93 #    93 #/
  1781    }
  1782  }
  1783  
  1784  # EVIDENCE-OF: R-65068-27207 Otherwise, if the ORDER BY expression is
  1785  # any other expression, it is evaluated and the returned value used to
  1786  # order the output rows.
  1787  #
  1788  # EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT,
  1789  # then an ORDER BY may contain any arbitrary expressions.
  1790  #
  1791  do_select_tests e_select-8.6 {
  1792    1   "SELECT * FROM d1 ORDER BY x+y+z" {
  1793      1 2 -20    1 5 -1    1 2 3    2 5 -1 
  1794      1 2 7      1 2 8     1 4 93   2 4 93
  1795    }
  1796    2   "SELECT * FROM d1 ORDER BY x*z" {
  1797      1 2 -20    2 5 -1    1 5 -1    1 2 3 
  1798      1 2 7      1 2 8     1 4 93    2 4 93
  1799    }
  1800    3   "SELECT * FROM d1 ORDER BY y*z" {
  1801      1 2 -20    2 5 -1    1 5 -1    1 2 3 
  1802      1 2 7      1 2 8     2 4 93    1 4 93
  1803    }
  1804  }
  1805  
  1806  # EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound
  1807  # SELECT, then ORDER BY expressions that are not aliases to output
  1808  # columns must be exactly the same as an expression used as an output
  1809  # column.
  1810  #
  1811  do_select_tests e_select-8.7.1 -error {
  1812    %s ORDER BY term does not match any column in the result set
  1813  } {
  1814    1   "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z"        1st
  1815    2   "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd
  1816  } 
  1817  
  1818  do_select_tests e_select-8.7.2 {
  1819    1   "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" {
  1820      -20 -2 -1 3 7 8 93 186 babied barked commercials gently 
  1821      iterate lad pragmatist reemphasizes rejoicing solemnness
  1822    }
  1823    2   "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" {
  1824      1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0 
  1825      babied charitableness barked interrupted commercials bathrobe gently
  1826      failings iterate sexton lad relenting pragmatist guarded reemphasizes reply
  1827      rejoicing liabilities solemnness annexed
  1828    }
  1829  } 
  1830  
  1831  do_execsql_test e_select-8.8.0 {
  1832    CREATE TABLE d3(a);
  1833    INSERT INTO d3 VALUES('text');
  1834    INSERT INTO d3 VALUES(14.1);
  1835    INSERT INTO d3 VALUES(13);
  1836    INSERT INTO d3 VALUES(X'78787878');
  1837    INSERT INTO d3 VALUES(15);
  1838    INSERT INTO d3 VALUES(12.9);
  1839    INSERT INTO d3 VALUES(null);
  1840  
  1841    CREATE TABLE d4(x COLLATE nocase);
  1842    INSERT INTO d4 VALUES('abc');
  1843    INSERT INTO d4 VALUES('ghi');
  1844    INSERT INTO d4 VALUES('DEF');
  1845    INSERT INTO d4 VALUES('JKL');
  1846  } {}
  1847  
  1848  # EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values
  1849  # are compared in the same way as for comparison expressions.
  1850  #
  1851  #   The following tests verify that values of different types are sorted
  1852  #   correctly, and that mixed real and integer values are compared properly.
  1853  #
  1854  do_execsql_test e_select-8.8.1 {
  1855    SELECT a FROM d3 ORDER BY a
  1856  } {{} 12.9 13 14.1 15 text xxxx}
  1857  do_execsql_test e_select-8.8.2 {
  1858    SELECT a FROM d3 ORDER BY a DESC
  1859  } {xxxx text 15 14.1 13 12.9 {}}
  1860  
  1861  
  1862  # EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a
  1863  # collation sequence using the postfix COLLATE operator, then the
  1864  # specified collation sequence is used.
  1865  #
  1866  do_execsql_test e_select-8.9.1 {
  1867    SELECT x FROM d4 ORDER BY 1 COLLATE binary
  1868  } {DEF JKL abc ghi}
  1869  do_execsql_test e_select-8.9.2 {
  1870    SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase
  1871  } {abc DEF ghi JKL}
  1872  
  1873  # EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is 
  1874  # an alias to an expression that has been assigned a collation sequence 
  1875  # using the postfix COLLATE operator, then the collation sequence 
  1876  # assigned to the aliased expression is used.
  1877  #
  1878  #   In the test 8.10.2, the only result-column expression has no alias. So the
  1879  #   ORDER BY expression is not a reference to it and therefore does not inherit
  1880  #   the collation sequence. In test 8.10.3, "x" is the alias (as well as the
  1881  #   column name), so the ORDER BY expression is interpreted as an alias and the
  1882  #   collation sequence attached to the result column is used for sorting.
  1883  #
  1884  do_execsql_test e_select-8.10.1 {
  1885    SELECT x COLLATE binary FROM d4 ORDER BY 1
  1886  } {DEF JKL abc ghi}
  1887  do_execsql_test e_select-8.10.2 {
  1888    SELECT x COLLATE binary FROM d4 ORDER BY x
  1889  } {abc DEF ghi JKL}
  1890  do_execsql_test e_select-8.10.3 {
  1891    SELECT x COLLATE binary AS x FROM d4 ORDER BY x
  1892  } {DEF JKL abc ghi}
  1893  
  1894  # EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a
  1895  # column or an alias of an expression that is a column, then the default
  1896  # collation sequence for the column is used.
  1897  #
  1898  do_execsql_test e_select-8.11.1 {
  1899    SELECT x AS y FROM d4 ORDER BY y
  1900  } {abc DEF ghi JKL}
  1901  do_execsql_test e_select-8.11.2 {
  1902    SELECT x||'' FROM d4 ORDER BY x
  1903  } {abc DEF ghi JKL}
  1904  
  1905  # EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is
  1906  # used.
  1907  #
  1908  do_execsql_test e_select-8.12.1 {
  1909    SELECT x FROM d4 ORDER BY x||''
  1910  } {DEF JKL abc ghi}
  1911  
  1912  # EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer
  1913  # alias, then SQLite searches the left-most SELECT in the compound for a
  1914  # result column that matches either the second or third rules above. If
  1915  # a match is found, the search stops and the expression is handled as an
  1916  # alias for the result column that it has been matched against.
  1917  # Otherwise, the next SELECT to the right is tried, and so on.
  1918  #
  1919  do_execsql_test e_select-8.13.0 {
  1920    CREATE TABLE d5(a, b);
  1921    CREATE TABLE d6(c, d);
  1922    CREATE TABLE d7(e, f);
  1923   
  1924    INSERT INTO d5 VALUES(1, 'f');
  1925    INSERT INTO d6 VALUES(2, 'e');
  1926    INSERT INTO d7 VALUES(3, 'd');
  1927    INSERT INTO d5 VALUES(4, 'c');
  1928    INSERT INTO d6 VALUES(5, 'b');
  1929    INSERT INTO d7 VALUES(6, 'a');
  1930  
  1931    CREATE TABLE d8(x COLLATE nocase);
  1932    CREATE TABLE d9(y COLLATE nocase);
  1933  
  1934    INSERT INTO d8 VALUES('a');
  1935    INSERT INTO d9 VALUES('B');
  1936    INSERT INTO d8 VALUES('c');
  1937    INSERT INTO d9 VALUES('D');
  1938  } {}
  1939  do_select_tests e_select-8.13 {
  1940    1   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
  1941           ORDER BY a
  1942        } {1 2 3 4 5 6}
  1943    2   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
  1944           ORDER BY c
  1945        } {1 2 3 4 5 6}
  1946    3   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
  1947           ORDER BY e
  1948        } {1 2 3 4 5 6}
  1949    4   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
  1950           ORDER BY 1
  1951        } {1 2 3 4 5 6}
  1952  
  1953    5   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b } 
  1954        {f 1   c 4   4 c   1 f}
  1955    6   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 } 
  1956        {f 1   c 4   4 c   1 f}
  1957  
  1958    7   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a } 
  1959        {1 f   4 c   c 4   f 1}
  1960    8   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 } 
  1961        {1 f   4 c   c 4   f 1}
  1962  
  1963    9   { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 
  1964        {f 2   c 5   4 c   1 f}
  1965    10  { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 } 
  1966        {f 2   c 5   4 c   1 f}
  1967  
  1968    11  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 
  1969        {2 f   5 c   c 5   f 2}
  1970    12  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 } 
  1971        {2 f   5 c   c 5   f 2}
  1972  } 
  1973  
  1974  # EVIDENCE-OF: R-39265-04070 If no matching expression can be found in
  1975  # the result columns of any constituent SELECT, it is an error.
  1976  #
  1977  do_select_tests e_select-8.14 -error {
  1978    %s ORDER BY term does not match any column in the result set
  1979  } {
  1980    1   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 }          1st
  1981    2   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 }       2nd
  1982    3   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' }  1st
  1983    4   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah    }  1st
  1984    5   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d }  3rd
  1985    6   { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b  }  4th
  1986  } 
  1987  
  1988  # EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is
  1989  # processed separately and may be matched against result columns from
  1990  # different SELECT statements in the compound.
  1991  # 
  1992  do_select_tests e_select-8.15 {
  1993    1  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d }
  1994       {1 e   1 f   4 b   4 c}
  1995    2  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b }
  1996       {1 e   1 f   4 b   4 c}
  1997    3  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 }
  1998       {1 e   1 f   4 b   4 c}
  1999  } 
  2000  
  2001  
  2002  #-------------------------------------------------------------------------
  2003  # Tests related to statements made about the LIMIT/OFFSET clause.
  2004  #
  2005  do_execsql_test e_select-9.0 {
  2006    CREATE TABLE f1(a, b);
  2007    INSERT INTO f1 VALUES(26, 'z');
  2008    INSERT INTO f1 VALUES(25, 'y');
  2009    INSERT INTO f1 VALUES(24, 'x');
  2010    INSERT INTO f1 VALUES(23, 'w');
  2011    INSERT INTO f1 VALUES(22, 'v');
  2012    INSERT INTO f1 VALUES(21, 'u');
  2013    INSERT INTO f1 VALUES(20, 't');
  2014    INSERT INTO f1 VALUES(19, 's');
  2015    INSERT INTO f1 VALUES(18, 'r');
  2016    INSERT INTO f1 VALUES(17, 'q');
  2017    INSERT INTO f1 VALUES(16, 'p');
  2018    INSERT INTO f1 VALUES(15, 'o');
  2019    INSERT INTO f1 VALUES(14, 'n');
  2020    INSERT INTO f1 VALUES(13, 'm');
  2021    INSERT INTO f1 VALUES(12, 'l');
  2022    INSERT INTO f1 VALUES(11, 'k');
  2023    INSERT INTO f1 VALUES(10, 'j');
  2024    INSERT INTO f1 VALUES(9, 'i');
  2025    INSERT INTO f1 VALUES(8, 'h');
  2026    INSERT INTO f1 VALUES(7, 'g');
  2027    INSERT INTO f1 VALUES(6, 'f');
  2028    INSERT INTO f1 VALUES(5, 'e');
  2029    INSERT INTO f1 VALUES(4, 'd');
  2030    INSERT INTO f1 VALUES(3, 'c');
  2031    INSERT INTO f1 VALUES(2, 'b');
  2032    INSERT INTO f1 VALUES(1, 'a');
  2033  } {}
  2034  
  2035  # EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the
  2036  # LIMIT clause, so long as it evaluates to an integer or a value that
  2037  # can be losslessly converted to an integer.
  2038  #
  2039  do_select_tests e_select-9.1 {
  2040    1  { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e}
  2041    2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e}
  2042    3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') } 
  2043       {a b c d e}
  2044    4  { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e}
  2045    5  { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e}
  2046  }
  2047  
  2048  # EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value
  2049  # or any other value that cannot be losslessly converted to an integer,
  2050  # an error is returned.
  2051  #
  2052  
  2053  do_select_tests e_select-9.2 -error "datatype mismatch" {
  2054    1  { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {}
  2055    2  { SELECT b FROM f1 ORDER BY a LIMIT NULL } {}
  2056    3  { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {}
  2057    4  { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {}
  2058    5  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {}
  2059  } 
  2060  
  2061  # EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a
  2062  # negative value, then there is no upper bound on the number of rows
  2063  # returned.
  2064  #
  2065  do_select_tests e_select-9.4 {
  2066    1  { SELECT b FROM f1 ORDER BY a LIMIT -1 } 
  2067       {a b c d e f g h i j k l m n o p q r s t u v w x y z}
  2068    2  { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 } 
  2069       {a b c d e f g h i j k l m n o p q r s t u v w x y z}
  2070    3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 }
  2071       {a b c d e f g h i j k l m n o p q r s t u v w x y z}
  2072  }
  2073  
  2074  # EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N
  2075  # rows of its result set only, where N is the value that the LIMIT
  2076  # expression evaluates to.
  2077  #
  2078  do_select_tests e_select-9.5 {
  2079    1  { SELECT b FROM f1 ORDER BY a LIMIT 0 } {}
  2080    2  { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w}
  2081    3  { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s}
  2082    4  { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o}
  2083  }
  2084  
  2085  # EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return
  2086  # less than N rows without a LIMIT clause, then the entire result set is
  2087  # returned.
  2088  #
  2089  do_select_tests e_select-9.6 {
  2090    1  { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z}
  2091    2  { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5}
  2092  } 
  2093  
  2094  
  2095  # EVIDENCE-OF: R-24188-24349 The expression attached to the optional
  2096  # OFFSET clause that may follow a LIMIT clause must also evaluate to an
  2097  # integer, or a value that can be losslessly converted to an integer.
  2098  #
  2099  foreach {tn select} {
  2100    1  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' } 
  2101    2  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL } 
  2102    3  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' } 
  2103    4  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 } 
  2104    5  { SELECT b FROM f1 ORDER BY a 
  2105         LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1) 
  2106    } 
  2107  } {
  2108    do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}}
  2109  }
  2110  
  2111  # EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then
  2112  # the first M rows are omitted from the result set returned by the
  2113  # SELECT statement and the next N rows are returned, where M and N are
  2114  # the values that the OFFSET and LIMIT clauses evaluate to,
  2115  # respectively.
  2116  #
  2117  do_select_tests e_select-9.8 {
  2118    1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o}
  2119    2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o}
  2120    3  { SELECT b FROM f1 ORDER BY a 
  2121         LIMIT  (SELECT a FROM f1 WHERE b='j') 
  2122         OFFSET (SELECT a FROM f1 WHERE b='b') 
  2123       } {c d e f g h i j k l}
  2124    4  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h}
  2125    5  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e}
  2126    6  { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {}
  2127    7  { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r}
  2128  }
  2129  
  2130  # EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than
  2131  # M+N rows if it did not have a LIMIT clause, then the first M rows are
  2132  # skipped and the remaining rows (if any) are returned.
  2133  #
  2134  do_select_tests e_select-9.9 {
  2135    1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z}
  2136    2  { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1}
  2137  }
  2138  
  2139  
  2140  # EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a
  2141  # negative value, the results are the same as if it had evaluated to
  2142  # zero.
  2143  #
  2144  do_select_tests e_select-9.10 {
  2145    1  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e}
  2146    2  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e}
  2147    3  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0  } {a b c d e}
  2148  } 
  2149  
  2150  # EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the
  2151  # LIMIT clause may specify two scalar expressions separated by a comma.
  2152  #
  2153  # EVIDENCE-OF: R-33788-46243 In this case, the first expression is used
  2154  # as the OFFSET expression and the second as the LIMIT expression.
  2155  #
  2156  do_select_tests e_select-9.11 {
  2157    1  { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o}
  2158    2  { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o}
  2159    3  { SELECT b FROM f1 ORDER BY a 
  2160         LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j') 
  2161       } {c d e f g h i j k l}
  2162    4  { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h}
  2163    5  { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e}
  2164    6  { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {}
  2165    7  { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r}
  2166  
  2167    8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
  2168    9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}
  2169  
  2170    10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
  2171    11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
  2172    12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
  2173  }
  2174  
  2175  finish_test