modernc.org/cc@v1.0.1/v2/testdata/_sqlite/test/e_select.test (about) 1 # 2010 July 16 2 # 3 # The author disclaims copyright to this source code. In place of 4 # a legal notice, here is a blessing: 5 # 6 # May you do good and not evil. 7 # May you find forgiveness for yourself and forgive others. 8 # May you share freely, never taking more than you give. 9 # 10 #*********************************************************************** 11 # 12 # This file implements tests to verify that the "testable statements" in 13 # the lang_select.html document are correct. 14 # 15 16 set testdir [file dirname $argv0] 17 source $testdir/tester.tcl 18 19 ifcapable !compound { 20 finish_test 21 return 22 } 23 24 do_execsql_test e_select-1.0 { 25 CREATE TABLE t1(a, b); 26 INSERT INTO t1 VALUES('a', 'one'); 27 INSERT INTO t1 VALUES('b', 'two'); 28 INSERT INTO t1 VALUES('c', 'three'); 29 30 CREATE TABLE t2(a, b); 31 INSERT INTO t2 VALUES('a', 'I'); 32 INSERT INTO t2 VALUES('b', 'II'); 33 INSERT INTO t2 VALUES('c', 'III'); 34 35 CREATE TABLE t3(a, c); 36 INSERT INTO t3 VALUES('a', 1); 37 INSERT INTO t3 VALUES('b', 2); 38 39 CREATE TABLE t4(a, c); 40 INSERT INTO t4 VALUES('a', NULL); 41 INSERT INTO t4 VALUES('b', 2); 42 } {} 43 set t1_cross_t2 [list \ 44 a one a I a one b II \ 45 a one c III b two a I \ 46 b two b II b two c III \ 47 c three a I c three b II \ 48 c three c III \ 49 ] 50 set t1_cross_t1 [list \ 51 a one a one a one b two \ 52 a one c three b two a one \ 53 b two b two b two c three \ 54 c three a one c three b two \ 55 c three c three \ 56 ] 57 58 59 # This proc is a specialized version of [do_execsql_test]. 60 # 61 # The second argument to this proc must be a SELECT statement that 62 # features a cross join of some time. Instead of the usual ",", 63 # "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be 64 # substituted. 65 # 66 # This test runs the SELECT three times - once with: 67 # 68 # * s/%JOIN%/,/ 69 # * s/%JOIN%/JOIN/ 70 # * s/%JOIN%/INNER JOIN/ 71 # * s/%JOIN%/CROSS JOIN/ 72 # 73 # and checks that each time the results of the SELECT are $res. 74 # 75 proc do_join_test {tn select res} { 76 foreach {tn2 joinop} [list 1 , 2 "CROSS JOIN" 3 "INNER JOIN"] { 77 set S [string map [list %JOIN% $joinop] $select] 78 uplevel do_execsql_test $tn.$tn2 [list $S] [list $res] 79 } 80 } 81 82 #------------------------------------------------------------------------- 83 # The following tests check that all paths on the syntax diagrams on 84 # the lang_select.html page may be taken. 85 # 86 # -- syntax diagram join-constraint 87 # 88 do_join_test e_select-0.1.1 { 89 SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a) 90 } {3} 91 do_join_test e_select-0.1.2 { 92 SELECT count(*) FROM t1 %JOIN% t2 USING (a) 93 } {3} 94 do_join_test e_select-0.1.3 { 95 SELECT count(*) FROM t1 %JOIN% t2 96 } {9} 97 do_catchsql_test e_select-0.1.4 { 98 SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a) 99 } {1 {cannot have both ON and USING clauses in the same join}} 100 do_catchsql_test e_select-0.1.5 { 101 SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a) 102 } {1 {near "ON": syntax error}} 103 104 # -- syntax diagram select-core 105 # 106 # 0: SELECT ... 107 # 1: SELECT DISTINCT ... 108 # 2: SELECT ALL ... 109 # 110 # 0: No FROM clause 111 # 1: Has FROM clause 112 # 113 # 0: No WHERE clause 114 # 1: Has WHERE clause 115 # 116 # 0: No GROUP BY clause 117 # 1: Has GROUP BY clause 118 # 2: Has GROUP BY and HAVING clauses 119 # 120 do_select_tests e_select-0.2 { 121 0000.1 "SELECT 1, 2, 3 " {1 2 3} 122 1000.1 "SELECT DISTINCT 1, 2, 3 " {1 2 3} 123 2000.1 "SELECT ALL 1, 2, 3 " {1 2 3} 124 125 0100.1 "SELECT a, b, a||b FROM t1 " { 126 a one aone b two btwo c three cthree 127 } 128 1100.1 "SELECT DISTINCT a, b, a||b FROM t1 " { 129 a one aone b two btwo c three cthree 130 } 131 1200.1 "SELECT ALL a, b, a||b FROM t1 " { 132 a one aone b two btwo c three cthree 133 } 134 135 0010.1 "SELECT 1, 2, 3 WHERE 1 " {1 2 3} 136 0010.2 "SELECT 1, 2, 3 WHERE 0 " {} 137 0010.3 "SELECT 1, 2, 3 WHERE NULL " {} 138 139 1010.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3} 140 141 2010.1 "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3} 142 143 0110.1 "SELECT a, b, a||b FROM t1 WHERE a!='x' " { 144 a one aone b two btwo c three cthree 145 } 146 0110.2 "SELECT a, b, a||b FROM t1 WHERE a=='x'" {} 147 148 1110.1 "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " { 149 a one aone b two btwo c three cthree 150 } 151 152 2110.0 "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {} 153 154 0001.1 "SELECT 1, 2, 3 GROUP BY 2" {1 2 3} 155 0002.1 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 156 0002.2 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 157 158 1001.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3} 159 1002.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 160 1002.2 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 161 162 2001.1 "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3} 163 2002.1 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 164 2002.2 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 165 166 0101.1 "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 167 0102.1 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" { 168 1 a 1 c 1 b 169 } 170 0102.2 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" { } 171 172 1101.1 "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 173 1102.1 "SELECT DISTINCT count(*), max(a) FROM t1 174 GROUP BY b HAVING count(*)=1" { 175 1 a 1 c 1 b 176 } 177 1102.2 "SELECT DISTINCT count(*), max(a) FROM t1 178 GROUP BY b HAVING count(*)=2" { 179 } 180 181 2101.1 "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 182 2102.1 "SELECT ALL count(*), max(a) FROM t1 183 GROUP BY b HAVING count(*)=1" { 184 1 a 1 c 1 b 185 } 186 2102.2 "SELECT ALL count(*), max(a) FROM t1 187 GROUP BY b HAVING count(*)=2" { 188 } 189 190 0011.1 "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3} 191 0012.1 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {} 192 0012.2 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {} 193 194 1011.1 "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {} 195 1012.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1" 196 {1 2 3} 197 1012.2 "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {} 198 199 2011.1 "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3} 200 2012.1 "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {} 201 2012.2 "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {} 202 203 0111.1 "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a} 204 0112.1 "SELECT count(*), max(a) FROM t1 205 WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c} 206 0112.2 "SELECT count(*), max(a) FROM t1 207 WHERE 0 GROUP BY b HAVING count(*)=2" { } 208 1111.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b" 209 {1 a 1 b} 210 1112.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a' 211 GROUP BY b HAVING count(*)=1" { 212 1 c 1 b 213 } 214 1112.2 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0 215 GROUP BY b HAVING count(*)=2" { 216 } 217 218 2111.1 "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b" 219 {1 c 1 b} 220 2112.1 "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b' 221 GROUP BY b HAVING count(*)=1" { 222 1 a 1 c 223 } 224 2112.2 "SELECT ALL count(*), max(a) FROM t1 225 WHERE 0 GROUP BY b HAVING count(*)=2" { } 226 } 227 228 229 # -- syntax diagram result-column 230 # 231 do_select_tests e_select-0.3 { 232 1 "SELECT * FROM t1" {a one b two c three} 233 2 "SELECT t1.* FROM t1" {a one b two c three} 234 3 "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx} 235 4 "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx} 236 5 "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx} 237 } 238 239 # -- syntax diagram join-source 240 # 241 # -- syntax diagram join-op 242 # 243 do_select_tests e_select-0.4 { 244 1 "SELECT t1.rowid FROM t1" {1 2 3} 245 2 "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3} 246 3 "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3} 247 248 4 "SELECT t1.rowid FROM t1" {1 2 3} 249 5 "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3} 250 6 "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3" 251 {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3} 252 253 7 "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2} 254 8 "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3} 255 9 "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3} 256 10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2} 257 11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2} 258 259 12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3} 260 13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3} 261 14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3} 262 15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3} 263 16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3} 264 } 265 266 # -- syntax diagram compound-operator 267 # 268 do_select_tests e_select-0.5 { 269 1 "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4} 270 2 "SELECT rowid FROM t1 UNION SELECT rowid+2 FROM t4" {1 2 3 4} 271 3 "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3} 272 4 "SELECT rowid FROM t1 EXCEPT SELECT rowid+2 FROM t4" {1 2} 273 } 274 275 # -- syntax diagram ordering-term 276 # 277 do_select_tests e_select-0.6 { 278 1 "SELECT b||a FROM t1 ORDER BY b||a" {onea threec twob} 279 2 "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob} 280 3 "SELECT b||a FROM t1 ORDER BY (b||a) ASC" {onea threec twob} 281 4 "SELECT b||a FROM t1 ORDER BY (b||a) DESC" {twob threec onea} 282 } 283 284 # -- syntax diagram select-stmt 285 # 286 do_select_tests e_select-0.7 { 287 1 "SELECT * FROM t1" {a one b two c three} 288 2 "SELECT * FROM t1 ORDER BY b" {a one c three b two} 289 3 "SELECT * FROM t1 ORDER BY b, a" {a one c three b two} 290 291 4 "SELECT * FROM t1 LIMIT 10" {a one b two c three} 292 5 "SELECT * FROM t1 LIMIT 10 OFFSET 5" {} 293 6 "SELECT * FROM t1 LIMIT 10, 5" {} 294 295 7 "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three} 296 8 "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {} 297 9 "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {} 298 299 10 "SELECT * FROM t1 UNION SELECT b, a FROM t1" 300 {a one b two c three one a three c two b} 301 11 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b" 302 {one a two b three c a one c three b two} 303 12 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a" 304 {one a two b three c a one c three b two} 305 13 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10" 306 {a one b two c three one a three c two b} 307 14 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5" 308 {two b} 309 15 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5" 310 {} 311 16 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10" 312 {a one b two c three one a three c two b} 313 17 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5" 314 {b two} 315 18 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5" 316 {} 317 } 318 319 #------------------------------------------------------------------------- 320 # The following tests focus on FROM clause (join) processing. 321 # 322 323 # EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple 324 # SELECT statement, then the input data is implicitly a single row zero 325 # columns wide 326 # 327 do_select_tests e_select-1.1 { 328 1 "SELECT 'abc'" {abc} 329 2 "SELECT 'abc' WHERE NULL" {} 330 3 "SELECT NULL" {{}} 331 4 "SELECT count(*)" {1} 332 5 "SELECT count(*) WHERE 0" {0} 333 6 "SELECT count(*) WHERE 1" {1} 334 } 335 336 # EVIDENCE-OF: R-45424-07352 If there is only a single table or subquery 337 # in the FROM clause, then the input data used by the SELECT statement 338 # is the contents of the named table. 339 # 340 # The results of the SELECT queries suggest that they are operating on the 341 # contents of the table 'xx'. 342 # 343 do_execsql_test e_select-1.2.0 { 344 CREATE TABLE xx(x, y); 345 INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2'); 346 INSERT INTO xx VALUES(NULL, -16.87); 347 INSERT INTO xx VALUES(-17.89, 'linguistically'); 348 } {} 349 do_select_tests e_select-1.2 { 350 1 "SELECT quote(x), quote(y) FROM xx" { 351 'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2' 352 NULL -16.87 353 -17.89 'linguistically' 354 } 355 356 2 "SELECT count(*), count(x), count(y) FROM xx" {3 2 3} 357 3 "SELECT sum(x), sum(y) FROM xx" {-17.89 -16.87} 358 } 359 360 # EVIDENCE-OF: R-28355-09804 If there is more than one table or subquery 361 # in FROM clause then the contents of all tables and/or subqueries are 362 # joined into a single dataset for the simple SELECT statement to 363 # operate on. 364 # 365 # There are more detailed tests for subsequent requirements that add 366 # more detail to this idea. We just add a single test that shows that 367 # data is coming from each of the three tables following the FROM clause 368 # here to show that the statement, vague as it is, is not incorrect. 369 # 370 do_select_tests e_select-1.3 { 371 1 "SELECT * FROM t1, t2, t3" { 372 a one a I a 1 a one a I b 2 a one b II a 1 373 a one b II b 2 a one c III a 1 a one c III b 2 374 b two a I a 1 b two a I b 2 b two b II a 1 375 b two b II b 2 b two c III a 1 b two c III b 2 376 c three a I a 1 c three a I b 2 c three b II a 1 377 c three b II b 2 c three c III a 1 c three c III b 2 378 } 379 } 380 381 # 382 # The following block of tests - e_select-1.4.* - test that the description 383 # of cartesian joins in the SELECT documentation is consistent with SQLite. 384 # In doing so, we test the following three requirements as a side-effect: 385 # 386 # EVIDENCE-OF: R-49872-03192 If the join-operator is "CROSS JOIN", 387 # "INNER JOIN", "JOIN" or a comma (",") and there is no ON or USING 388 # clause, then the result of the join is simply the cartesian product of 389 # the left and right-hand datasets. 390 # 391 # The tests are built on this assertion. Really, they test that the output 392 # of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result 393 # of calculating the cartesian product of the left and right-hand datasets. 394 # 395 # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER 396 # JOIN", "JOIN" and "," join operators. 397 # 398 # EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the 399 # same result as the "INNER JOIN", "JOIN" and "," operators 400 # 401 # All tests are run 4 times, with the only difference in each run being 402 # which of the 4 equivalent cartesian product join operators are used. 403 # Since the output data is the same in all cases, we consider that this 404 # qualifies as testing the two statements above. 405 # 406 do_execsql_test e_select-1.4.0 { 407 CREATE TABLE x1(a, b); 408 CREATE TABLE x2(c, d, e); 409 CREATE TABLE x3(f, g, h, i); 410 411 -- x1: 3 rows, 2 columns 412 INSERT INTO x1 VALUES(24, 'converging'); 413 INSERT INTO x1 VALUES(NULL, X'CB71'); 414 INSERT INTO x1 VALUES('blonds', 'proprietary'); 415 416 -- x2: 2 rows, 3 columns 417 INSERT INTO x2 VALUES(-60.06, NULL, NULL); 418 INSERT INTO x2 VALUES(-58, NULL, 1.21); 419 420 -- x3: 5 rows, 4 columns 421 INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1); 422 INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified'); 423 INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL); 424 INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3); 425 INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL); 426 } {} 427 428 # EVIDENCE-OF: R-59089-25828 The columns of the cartesian product 429 # dataset are, in order, all the columns of the left-hand dataset 430 # followed by all the columns of the right-hand dataset. 431 # 432 do_join_test e_select-1.4.1.1 { 433 SELECT * FROM x1 %JOIN% x2 LIMIT 1 434 } [concat {24 converging} {-60.06 {} {}}] 435 436 do_join_test e_select-1.4.1.2 { 437 SELECT * FROM x2 %JOIN% x1 LIMIT 1 438 } [concat {-60.06 {} {}} {24 converging}] 439 440 do_join_test e_select-1.4.1.3 { 441 SELECT * FROM x3 %JOIN% x2 LIMIT 1 442 } [concat {-39.24 {} encompass -1} {-60.06 {} {}}] 443 444 do_join_test e_select-1.4.1.4 { 445 SELECT * FROM x2 %JOIN% x3 LIMIT 1 446 } [concat {-60.06 {} {}} {-39.24 {} encompass -1}] 447 448 # EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product 449 # dataset formed by combining each unique combination of a row from the 450 # left-hand and right-hand datasets. 451 # 452 do_join_test e_select-1.4.2.1 { 453 SELECT * FROM x2 %JOIN% x3 ORDER BY +c, +f 454 } [list -60.06 {} {} -39.24 {} encompass -1 \ 455 -60.06 {} {} alerting {} -93.79 {} \ 456 -60.06 {} {} coldest -96 dramatists 82.3 \ 457 -60.06 {} {} conducting -87.24 37.56 {} \ 458 -60.06 {} {} presenting 51 reformation dignified \ 459 -58 {} 1.21 -39.24 {} encompass -1 \ 460 -58 {} 1.21 alerting {} -93.79 {} \ 461 -58 {} 1.21 coldest -96 dramatists 82.3 \ 462 -58 {} 1.21 conducting -87.24 37.56 {} \ 463 -58 {} 1.21 presenting 51 reformation dignified \ 464 ] 465 # TODO: Come back and add a few more like the above. 466 467 # EVIDENCE-OF: R-18439-38548 In other words, if the left-hand dataset 468 # consists of Nleft rows of Mleft columns, and the right-hand dataset of 469 # Nright rows of Mright columns, then the cartesian product is a dataset 470 # of Nleft×Nright rows, each containing Mleft+Mright columns. 471 # 472 # x1, x2 (Nlhs=3, Nrhs=2) (Mlhs=2, Mrhs=3) 473 do_join_test e_select-1.4.3.1 { 474 SELECT count(*) FROM x1 %JOIN% x2 475 } [expr 3*2] 476 do_test e_select-1.4.3.2 { 477 expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6} 478 } [expr 2+3] 479 480 # x2, x3 (Nlhs=2, Nrhs=5) (Mlhs=3, Mrhs=4) 481 do_join_test e_select-1.4.3.3 { 482 SELECT count(*) FROM x2 %JOIN% x3 483 } [expr 2*5] 484 do_test e_select-1.4.3.4 { 485 expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10} 486 } [expr 3+4] 487 488 # x3, x1 (Nlhs=5, Nrhs=3) (Mlhs=4, Mrhs=2) 489 do_join_test e_select-1.4.3.5 { 490 SELECT count(*) FROM x3 %JOIN% x1 491 } [expr 5*3] 492 do_test e_select-1.4.3.6 { 493 expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15} 494 } [expr 4+2] 495 496 # x3, x3 (Nlhs=5, Nrhs=5) (Mlhs=4, Mrhs=4) 497 do_join_test e_select-1.4.3.7 { 498 SELECT count(*) FROM x3 %JOIN% x3 499 } [expr 5*5] 500 do_test e_select-1.4.3.8 { 501 expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25} 502 } [expr 4+4] 503 504 # Some extra cartesian product tests using tables t1 and t2. 505 # 506 do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2 507 do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1 508 509 do_select_tests e_select-1.4.5 [list \ 510 1 { SELECT * FROM t1 CROSS JOIN t2 } $t1_cross_t2 \ 511 2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1 \ 512 3 { SELECT * FROM t1 INNER JOIN t2 } $t1_cross_t2 \ 513 4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1 \ 514 ] 515 516 # EVIDENCE-OF: R-38465-03616 If there is an ON clause then the ON 517 # expression is evaluated for each row of the cartesian product as a 518 # boolean expression. Only rows for which the expression evaluates to 519 # true are included from the dataset. 520 # 521 foreach {tn select res} [list \ 522 1 { SELECT * FROM t1 %JOIN% t2 ON (1) } $t1_cross_t2 \ 523 2 { SELECT * FROM t1 %JOIN% t2 ON (0) } [list] \ 524 3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) } [list] \ 525 4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') } [list] \ 526 5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') } $t1_cross_t2 \ 527 6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) } $t1_cross_t2 \ 528 7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') } $t1_cross_t2 \ 529 8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) } [list] \ 530 \ 531 9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) } \ 532 {one I two II three III} \ 533 10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') } \ 534 {one I one II one III} \ 535 11 { SELECT t1.b, t2.b 536 FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \ 537 {two I two II two III three I three II three III} \ 538 ] { 539 do_join_test e_select-1.3.$tn $select $res 540 } 541 542 # EVIDENCE-OF: R-49933-05137 If there is a USING clause then each of the 543 # column names specified must exist in the datasets to both the left and 544 # right of the join-operator. 545 # 546 do_select_tests e_select-1.4 -error { 547 cannot join using column %s - column not present in both tables 548 } { 549 1 { SELECT * FROM t1, t3 USING (b) } "b" 550 2 { SELECT * FROM t3, t1 USING (c) } "c" 551 3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) } "a" 552 } 553 554 # EVIDENCE-OF: R-22776-52830 For each pair of named columns, the 555 # expression "lhs.X = rhs.X" is evaluated for each row of the cartesian 556 # product as a boolean expression. Only rows for which all such 557 # expressions evaluates to true are included from the result set. 558 # 559 do_select_tests e_select-1.5 { 560 1 { SELECT * FROM t1, t3 USING (a) } {a one 1 b two 2} 561 2 { SELECT * FROM t3, t4 USING (a,c) } {b 2} 562 } 563 564 # EVIDENCE-OF: R-54046-48600 When comparing values as a result of a 565 # USING clause, the normal rules for handling affinities, collation 566 # sequences and NULL values in comparisons apply. 567 # 568 # EVIDENCE-OF: R-38422-04402 The column from the dataset on the 569 # left-hand side of the join-operator is considered to be on the 570 # left-hand side of the comparison operator (=) for the purposes of 571 # collation sequence and affinity precedence. 572 # 573 do_execsql_test e_select-1.6.0 { 574 CREATE TABLE t5(a COLLATE nocase, b COLLATE binary); 575 INSERT INTO t5 VALUES('AA', 'cc'); 576 INSERT INTO t5 VALUES('BB', 'dd'); 577 INSERT INTO t5 VALUES(NULL, NULL); 578 CREATE TABLE t6(a COLLATE binary, b COLLATE nocase); 579 INSERT INTO t6 VALUES('aa', 'cc'); 580 INSERT INTO t6 VALUES('bb', 'DD'); 581 INSERT INTO t6 VALUES(NULL, NULL); 582 } {} 583 foreach {tn select res} { 584 1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD} 585 2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {} 586 3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) } 587 {aa cc cc bb DD dd} 588 4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc} 589 5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {} 590 } { 591 do_join_test e_select-1.6.$tn $select $res 592 } 593 594 # EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a 595 # USING clause, the column from the right-hand dataset is omitted from 596 # the joined dataset. 597 # 598 # EVIDENCE-OF: R-56132-15700 This is the only difference between a USING 599 # clause and its equivalent ON constraint. 600 # 601 foreach {tn select res} { 602 1a { SELECT * FROM t1 %JOIN% t2 USING (a) } 603 {a one I b two II c three III} 604 1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) } 605 {a one a I b two b II c three c III} 606 607 2a { SELECT * FROM t3 %JOIN% t4 USING (a) } 608 {a 1 {} b 2 2} 609 2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) } 610 {a 1 a {} b 2 b 2} 611 612 3a { SELECT * FROM t3 %JOIN% t4 USING (a,c) } {b 2} 613 3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2} 614 615 4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 616 %JOIN% t5 USING (a) } 617 {aa cc cc bb DD dd} 618 4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 619 %JOIN% t5 ON (x.a=t5.a) } 620 {aa cc AA cc bb DD BB dd} 621 } { 622 do_join_test e_select-1.7.$tn $select $res 623 } 624 # EVIDENCE-OF: R-42531-52874 If the join-operator is a "LEFT JOIN" or 625 # "LEFT OUTER JOIN", then after the ON or USING filtering clauses have 626 # been applied, an extra row is added to the output for each row in the 627 # original left-hand input dataset that corresponds to no rows at all in 628 # the composite dataset (if any). 629 # 630 do_execsql_test e_select-1.8.0 { 631 CREATE TABLE t7(a, b, c); 632 CREATE TABLE t8(a, d, e); 633 634 INSERT INTO t7 VALUES('x', 'ex', 24); 635 INSERT INTO t7 VALUES('y', 'why', 25); 636 637 INSERT INTO t8 VALUES('x', 'abc', 24); 638 INSERT INTO t8 VALUES('z', 'ghi', 26); 639 } {} 640 641 do_select_tests e_select-1.8 { 642 1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1} 643 1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2} 644 2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1} 645 2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2} 646 } 647 648 649 # EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the 650 # columns that would normally contain values copied from the right-hand 651 # input dataset. 652 # 653 do_select_tests e_select-1.9 { 654 1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24} 655 1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" 656 {x ex 24 x abc 24 y why 25 {} {} {}} 657 2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 658 2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} 659 } 660 661 # EVIDENCE-OF: R-04932-55942 If the NATURAL keyword is in the 662 # join-operator then an implicit USING clause is added to the 663 # join-constraints. The implicit USING clause contains each of the 664 # column names that appear in both the left and right-hand input 665 # datasets. 666 # 667 do_select_tests e_select-1-10 { 668 1a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 669 1b "SELECT * FROM t7 NATURAL JOIN t8" {x ex 24 abc 24} 670 671 2a "SELECT * FROM t8 JOIN t7 USING (a)" {x abc 24 ex 24} 672 2b "SELECT * FROM t8 NATURAL JOIN t7" {x abc 24 ex 24} 673 674 3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} 675 3b "SELECT * FROM t7 NATURAL LEFT JOIN t8" {x ex 24 abc 24 y why 25 {} {}} 676 677 4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)" {x abc 24 ex 24 z ghi 26 {} {}} 678 4b "SELECT * FROM t8 NATURAL LEFT JOIN t7" {x abc 24 ex 24 z ghi 26 {} {}} 679 680 5a "SELECT * FROM t3 JOIN t4 USING (a,c)" {b 2} 681 5b "SELECT * FROM t3 NATURAL JOIN t4" {b 2} 682 683 6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2} 684 6b "SELECT * FROM t3 NATURAL LEFT JOIN t4" {a 1 b 2} 685 } 686 687 # EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets 688 # feature no common column names, then the NATURAL keyword has no effect 689 # on the results of the join. 690 # 691 do_execsql_test e_select-1.11.0 { 692 CREATE TABLE t10(x, y); 693 INSERT INTO t10 VALUES(1, 'true'); 694 INSERT INTO t10 VALUES(0, 'false'); 695 } {} 696 do_select_tests e_select-1-11 { 697 1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0} 698 1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0} 699 } 700 701 # EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a 702 # join that specifies the NATURAL keyword. 703 # 704 foreach {tn sql} { 705 1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)} 706 2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)} 707 3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)} 708 } { 709 do_catchsql_test e_select-1.12.$tn " 710 $sql 711 " {1 {a NATURAL join may not have an ON or USING clause}} 712 } 713 714 #------------------------------------------------------------------------- 715 # The next block of tests - e_select-3.* - concentrate on verifying 716 # statements made regarding WHERE clause processing. 717 # 718 drop_all_tables 719 do_execsql_test e_select-3.0 { 720 CREATE TABLE x1(k, x, y, z); 721 INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43); 722 INSERT INTO x1 VALUES(2, X'A8E8D66F', X'07CF', -81); 723 INSERT INTO x1 VALUES(3, -22, -27.57, NULL); 724 INSERT INTO x1 VALUES(4, NULL, 'bygone', 'picky'); 725 INSERT INTO x1 VALUES(5, NULL, 96.28, NULL); 726 INSERT INTO x1 VALUES(6, 0, 1, 2); 727 728 CREATE TABLE x2(k, x, y2); 729 INSERT INTO x2 VALUES(1, 50, X'B82838'); 730 INSERT INTO x2 VALUES(5, 84.79, 65.88); 731 INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393'); 732 INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized'); 733 } {} 734 735 # EVIDENCE-OF: R-60775-64916 If a WHERE clause is specified, the WHERE 736 # expression is evaluated for each row in the input data as a boolean 737 # expression. Only rows for which the WHERE clause expression evaluates 738 # to true are included from the dataset before continuing. 739 # 740 do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x } {3} 741 do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y } {3 5 6} 742 do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z } {1 2 6} 743 do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z } {1 2 4 6} 744 do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5} 745 do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6} 746 747 do_execsql_test e_select-3.2.1a { 748 SELECT k FROM x1 LEFT JOIN x2 USING(k) 749 } {1 2 3 4 5 6} 750 do_execsql_test e_select-3.2.1b { 751 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k 752 } {1 3 5} 753 do_execsql_test e_select-3.2.2 { 754 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL 755 } {2 4 6} 756 757 do_execsql_test e_select-3.2.3 { 758 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k 759 } {3} 760 do_execsql_test e_select-3.2.4 { 761 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3 762 } {} 763 764 #------------------------------------------------------------------------- 765 # Tests below this point are focused on verifying the testable statements 766 # related to caculating the result rows of a simple SELECT statement. 767 # 768 769 drop_all_tables 770 do_execsql_test e_select-4.0 { 771 CREATE TABLE z1(a, b, c); 772 CREATE TABLE z2(d, e); 773 CREATE TABLE z3(a, b); 774 775 INSERT INTO z1 VALUES(51.65, -59.58, 'belfries'); 776 INSERT INTO z1 VALUES(-5, NULL, 75); 777 INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters'); 778 INSERT INTO z1 VALUES(NULL, 67, 'quartets'); 779 INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen'); 780 INSERT INTO z1 VALUES(63, 'born', -26); 781 782 INSERT INTO z2 VALUES(NULL, 21); 783 INSERT INTO z2 VALUES(36, 6); 784 785 INSERT INTO z3 VALUES('subsistence', 'gauze'); 786 INSERT INTO z3 VALUES(49.17, -67); 787 } {} 788 789 # EVIDENCE-OF: R-36327-17224 If a result expression is the special 790 # expression "*" then all columns in the input data are substituted for 791 # that one expression. 792 # 793 # EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table 794 # or subquery in the FROM clause followed by ".*" then all columns from 795 # the named table or subquery are substituted for the single expression. 796 # 797 do_select_tests e_select-4.1 { 798 1 "SELECT * FROM z1 LIMIT 1" {51.65 -59.58 belfries} 799 2 "SELECT * FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries {} 21} 800 3 "SELECT z1.* FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries} 801 4 "SELECT z2.* FROM z1,z2 LIMIT 1" {{} 21} 802 5 "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries} 803 804 6 "SELECT count(*), * FROM z1" {6 63 born -26} 805 7 "SELECT max(a), * FROM z1" {63 63 born -26} 806 8 "SELECT *, min(a) FROM z1" {-5 {} 75 -5} 807 808 9 "SELECT *,* FROM z1,z2 LIMIT 1" { 809 51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21 810 } 811 10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" { 812 51.65 -59.58 belfries 51.65 -59.58 belfries 813 } 814 } 815 816 # EVIDENCE-OF: R-38023-18396 It is an error to use a "*" or "alias.*" 817 # expression in any context other than a result expression list. 818 # 819 # EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or 820 # "alias.*" expression in a simple SELECT query that does not have a 821 # FROM clause. 822 # 823 foreach {tn select err} { 824 1.1 "SELECT a, b, c FROM z1 WHERE *" {near "*": syntax error} 825 1.2 "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error} 826 1.3 "SELECT 1 + * FROM z1" {near "*": syntax error} 827 1.4 "SELECT * + 1 FROM z1" {near "+": syntax error} 828 829 2.1 "SELECT *" {no tables specified} 830 2.2 "SELECT * WHERE 1" {no tables specified} 831 2.3 "SELECT * WHERE 0" {no tables specified} 832 2.4 "SELECT count(*), *" {no tables specified} 833 } { 834 do_catchsql_test e_select-4.2.$tn $select [list 1 $err] 835 } 836 837 # EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned 838 # by a simple SELECT statement is equal to the number of expressions in 839 # the result expression list after substitution of * and alias.* 840 # expressions. 841 # 842 foreach {tn select nCol} { 843 1 "SELECT * FROM z1" 3 844 2 "SELECT * FROM z1 NATURAL JOIN z3" 3 845 3 "SELECT z1.* FROM z1 NATURAL JOIN z3" 3 846 4 "SELECT z3.* FROM z1 NATURAL JOIN z3" 2 847 5 "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3" 5 848 6 "SELECT 1, 2, z1.* FROM z1" 5 849 7 "SELECT a, *, b, c FROM z1" 6 850 } { 851 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY] 852 do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol 853 sqlite3_finalize $::stmt 854 } 855 856 857 858 # In lang_select.html, a non-aggregate query is defined as any simple SELECT 859 # that has no GROUP BY clause and no aggregate expressions in the result 860 # expression list. Other queries are aggregate queries. Test cases 861 # e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of 862 # simple SELECT that is different for aggregate and non-aggregate queries 863 # verify (in a way) that these definitions are consistent: 864 # 865 # EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate 866 # query if it contains either a GROUP BY clause or one or more aggregate 867 # functions in the result-set. 868 # 869 # EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no 870 # aggregate functions or a GROUP BY clause, it is a non-aggregate query. 871 # 872 873 # EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate 874 # query, then each expression in the result expression list is evaluated 875 # for each row in the dataset filtered by the WHERE clause. 876 # 877 do_select_tests e_select-4.4 { 878 1 "SELECT a, b FROM z1" 879 {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born} 880 881 2 "SELECT a IS NULL, b+1, * FROM z1" { 882 0 -58.58 51.65 -59.58 belfries 883 0 {} -5 {} 75 884 0 -22.18 -2.2 -23.18 suiters 885 1 68 {} 67 quartets 886 0 -31.3 -1.04 -32.3 aspen 887 0 1 63 born -26 888 } 889 890 3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366} 891 } 892 893 894 # Test cases e_select-4.5.* and e_select-4.6.* together show that: 895 # 896 # EVIDENCE-OF: R-51988-01124 The single row of result-set data created 897 # by evaluating the aggregate and non-aggregate expressions in the 898 # result-set forms the result of an aggregate query without a GROUP BY 899 # clause. 900 # 901 902 # EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate 903 # query without a GROUP BY clause, then each aggregate expression in the 904 # result-set is evaluated once across the entire dataset. 905 # 906 do_select_tests e_select-4.5 { 907 1 "SELECT count(a), max(a), count(b), max(b) FROM z1" {5 63 5 born} 908 2 "SELECT count(*), max(1)" {1 1} 909 910 3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3" {-43.06} 911 4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3" {-38.06} 912 5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5} 913 } 914 915 # EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the 916 # result-set is evaluated once for an arbitrarily selected row of the 917 # dataset. 918 # 919 # EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used 920 # for each non-aggregate expression. 921 # 922 # Note: The results of many of the queries in this block of tests are 923 # technically undefined, as the documentation does not specify which row 924 # SQLite will arbitrarily select to use for the evaluation of the 925 # non-aggregate expressions. 926 # 927 drop_all_tables 928 do_execsql_test e_select-4.6.0 { 929 CREATE TABLE a1(one PRIMARY KEY, two); 930 INSERT INTO a1 VALUES(1, 1); 931 INSERT INTO a1 VALUES(2, 3); 932 INSERT INTO a1 VALUES(3, 6); 933 INSERT INTO a1 VALUES(4, 10); 934 935 CREATE TABLE a2(one PRIMARY KEY, three); 936 INSERT INTO a2 VALUES(1, 1); 937 INSERT INTO a2 VALUES(3, 2); 938 INSERT INTO a2 VALUES(6, 3); 939 INSERT INTO a2 VALUES(10, 4); 940 } {} 941 do_select_tests e_select-4.6 { 942 1 "SELECT one, two, count(*) FROM a1" {4 10 4} 943 2 "SELECT one, two, count(*) FROM a1 WHERE one<3" {2 3 2} 944 3 "SELECT one, two, count(*) FROM a1 WHERE one>3" {4 10 1} 945 4 "SELECT *, count(*) FROM a1 JOIN a2" {4 10 10 4 16} 946 5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {3 6 2 3} 947 6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {3 6 2 3} 948 7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 3 6} 949 } 950 951 # EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then 952 # each non-aggregate expression is evaluated against a row consisting 953 # entirely of NULL values. 954 # 955 do_select_tests e_select-4.7 { 956 1 "SELECT one, two, count(*) FROM a1 WHERE 0" {{} {} 0} 957 2 "SELECT sum(two), * FROM a1, a2 WHERE three>5" {{} {} {} {} {}} 958 3 "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" { 959 1 1 1 960 } 961 } 962 963 # EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY 964 # clause always returns exactly one row of data, even if there are zero 965 # rows of input data. 966 # 967 foreach {tn select} { 968 8.1 "SELECT count(*) FROM a1" 969 8.2 "SELECT count(*) FROM a1 WHERE 0" 970 8.3 "SELECT count(*) FROM a1 WHERE 1" 971 8.4 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1" 972 8.5 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0" 973 } { 974 # Set $nRow to the number of rows returned by $select: 975 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY] 976 set nRow 0 977 while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow } 978 set rc [sqlite3_finalize $::stmt] 979 980 # Test that $nRow==1 and that statement execution was successful 981 # (rc==SQLITE_OK). 982 do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1} 983 } 984 985 drop_all_tables 986 do_execsql_test e_select-4.9.0 { 987 CREATE TABLE b1(one PRIMARY KEY, two); 988 INSERT INTO b1 VALUES(1, 'o'); 989 INSERT INTO b1 VALUES(4, 'f'); 990 INSERT INTO b1 VALUES(3, 't'); 991 INSERT INTO b1 VALUES(2, 't'); 992 INSERT INTO b1 VALUES(5, 'f'); 993 INSERT INTO b1 VALUES(7, 's'); 994 INSERT INTO b1 VALUES(6, 's'); 995 996 CREATE TABLE b2(x, y); 997 INSERT INTO b2 VALUES(NULL, 0); 998 INSERT INTO b2 VALUES(NULL, 1); 999 INSERT INTO b2 VALUES('xyz', 2); 1000 INSERT INTO b2 VALUES('abc', 3); 1001 INSERT INTO b2 VALUES('xyz', 4); 1002 1003 CREATE TABLE b3(a COLLATE nocase, b COLLATE binary); 1004 INSERT INTO b3 VALUES('abc', 'abc'); 1005 INSERT INTO b3 VALUES('aBC', 'aBC'); 1006 INSERT INTO b3 VALUES('Def', 'Def'); 1007 INSERT INTO b3 VALUES('dEF', 'dEF'); 1008 } {} 1009 1010 # EVIDENCE-OF: R-07284-35990 If the SELECT statement is an aggregate 1011 # query with a GROUP BY clause, then each of the expressions specified 1012 # as part of the GROUP BY clause is evaluated for each row of the 1013 # dataset. Each row is then assigned to a "group" based on the results; 1014 # rows for which the results of evaluating the GROUP BY expressions are 1015 # the same get assigned to the same group. 1016 # 1017 # These tests also show that the following is not untrue: 1018 # 1019 # EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do 1020 # not have to be expressions that appear in the result. 1021 # 1022 do_select_tests e_select-4.9 { 1023 1 "SELECT group_concat(one), two FROM b1 GROUP BY two" { 1024 /#,# f 1 o #,# s #,# t/ 1025 } 1026 2 "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" { 1027 1,2,3,4 10 5,6,7 18 1028 } 1029 3 "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" { 1030 4 1,5 2,6 3,7 1031 } 1032 4 "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" { 1033 4,3,5,7,6 1,2 1034 } 1035 } 1036 1037 # EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL 1038 # values are considered equal. 1039 # 1040 do_select_tests e_select-4.10 { 1041 1 "SELECT group_concat(y) FROM b2 GROUP BY x" {/#,# 3 #,#/} 1042 2 "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1} 1043 } 1044 1045 # EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation 1046 # sequence with which to compare text values apply when evaluating 1047 # expressions in a GROUP BY clause. 1048 # 1049 do_select_tests e_select-4.11 { 1050 1 "SELECT count(*) FROM b3 GROUP BY b" {1 1 1 1} 1051 2 "SELECT count(*) FROM b3 GROUP BY a" {2 2} 1052 3 "SELECT count(*) FROM b3 GROUP BY +b" {1 1 1 1} 1053 4 "SELECT count(*) FROM b3 GROUP BY +a" {2 2} 1054 5 "SELECT count(*) FROM b3 GROUP BY b||''" {1 1 1 1} 1055 6 "SELECT count(*) FROM b3 GROUP BY a||''" {1 1 1 1} 1056 } 1057 1058 # EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may 1059 # not be aggregate expressions. 1060 # 1061 foreach {tn select} { 1062 12.1 "SELECT * FROM b3 GROUP BY count(*)" 1063 12.2 "SELECT max(a) FROM b3 GROUP BY max(b)" 1064 12.3 "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)" 1065 } { 1066 set res {1 {aggregate functions are not allowed in the GROUP BY clause}} 1067 do_catchsql_test e_select-4.$tn $select $res 1068 } 1069 1070 # EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is 1071 # evaluated once for each group of rows as a boolean expression. If the 1072 # result of evaluating the HAVING clause is false, the group is 1073 # discarded. 1074 # 1075 # This requirement is tested by all e_select-4.13.* tests. 1076 # 1077 # EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate 1078 # expression, it is evaluated across all rows in the group. 1079 # 1080 # Tested by e_select-4.13.1.* 1081 # 1082 # EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate 1083 # expression, it is evaluated with respect to an arbitrarily selected 1084 # row from the group. 1085 # 1086 # Tested by e_select-4.13.2.* 1087 # 1088 # Tests in this block also show that this is not untrue: 1089 # 1090 # EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values, 1091 # even aggregate functions, that are not in the result. 1092 # 1093 do_execsql_test e_select-4.13.0 { 1094 CREATE TABLE c1(up, down); 1095 INSERT INTO c1 VALUES('x', 1); 1096 INSERT INTO c1 VALUES('x', 2); 1097 INSERT INTO c1 VALUES('x', 4); 1098 INSERT INTO c1 VALUES('x', 8); 1099 INSERT INTO c1 VALUES('y', 16); 1100 INSERT INTO c1 VALUES('y', 32); 1101 1102 CREATE TABLE c2(i, j); 1103 INSERT INTO c2 VALUES(1, 0); 1104 INSERT INTO c2 VALUES(2, 1); 1105 INSERT INTO c2 VALUES(3, 3); 1106 INSERT INTO c2 VALUES(4, 6); 1107 INSERT INTO c2 VALUES(5, 10); 1108 INSERT INTO c2 VALUES(6, 15); 1109 INSERT INTO c2 VALUES(7, 21); 1110 INSERT INTO c2 VALUES(8, 28); 1111 INSERT INTO c2 VALUES(9, 36); 1112 1113 CREATE TABLE c3(i PRIMARY KEY, k TEXT); 1114 INSERT INTO c3 VALUES(1, 'hydrogen'); 1115 INSERT INTO c3 VALUES(2, 'helium'); 1116 INSERT INTO c3 VALUES(3, 'lithium'); 1117 INSERT INTO c3 VALUES(4, 'beryllium'); 1118 INSERT INTO c3 VALUES(5, 'boron'); 1119 INSERT INTO c3 VALUES(94, 'plutonium'); 1120 } {} 1121 1122 do_select_tests e_select-4.13 { 1123 1.1 "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x} 1124 1.2 "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y} 1125 1.3 "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x} 1126 1.4 "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4} 1127 1128 2.1 "SELECT up FROM c1 GROUP BY up HAVING down>10" {y} 1129 2.2 "SELECT up FROM c1 GROUP BY up HAVING up='y'" {y} 1130 1131 2.3 "SELECT i, j FROM c2 GROUP BY i>4 HAVING i>6" {9 36} 1132 } 1133 1134 # EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then 1135 # evaluated once for each group of rows. 1136 # 1137 # EVIDENCE-OF: R-53735-47017 If the expression is an aggregate 1138 # expression, it is evaluated across all rows in the group. 1139 # 1140 do_select_tests e_select-4.15 { 1141 1 "SELECT sum(down) FROM c1 GROUP BY up" {15 48} 1142 2 "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)" {54 36 27 21 39 28} 1143 3 "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)" {80 36 40 21} 1144 4 "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22} 1145 5 "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2" 1146 {3 4.33 1 2.0} 1147 } 1148 1149 # EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single 1150 # arbitrarily chosen row from within the group. 1151 # 1152 # EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate 1153 # expression in the result-set, then all such expressions are evaluated 1154 # for the same row. 1155 # 1156 do_select_tests e_select-4.15 { 1157 1 "SELECT i, j FROM c2 GROUP BY i%2" {8 28 9 36} 1158 2 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {8 28} 1159 3 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36} 1160 4 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36} 1161 5 "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)" 1162 {2 5 boron 2 2 helium 1 3 lithium} 1163 } 1164 1165 # EVIDENCE-OF: R-19334-12811 Each group of input dataset rows 1166 # contributes a single row to the set of result rows. 1167 # 1168 # EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the 1169 # DISTINCT keyword, the number of rows returned by an aggregate query 1170 # with a GROUP BY clause is the same as the number of groups of rows 1171 # produced by applying the GROUP BY and HAVING clauses to the filtered 1172 # input dataset. 1173 # 1174 do_select_tests e_select.4.16 -count { 1175 1 "SELECT i, j FROM c2 GROUP BY i%2" 2 1176 2 "SELECT i, j FROM c2 GROUP BY i" 9 1177 3 "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4 1178 } 1179 1180 #------------------------------------------------------------------------- 1181 # The following tests attempt to verify statements made regarding the ALL 1182 # and DISTINCT keywords. 1183 # 1184 drop_all_tables 1185 do_execsql_test e_select-5.1.0 { 1186 CREATE TABLE h1(a, b); 1187 INSERT INTO h1 VALUES(1, 'one'); 1188 INSERT INTO h1 VALUES(1, 'I'); 1189 INSERT INTO h1 VALUES(1, 'i'); 1190 INSERT INTO h1 VALUES(4, 'four'); 1191 INSERT INTO h1 VALUES(4, 'IV'); 1192 INSERT INTO h1 VALUES(4, 'iv'); 1193 1194 CREATE TABLE h2(x COLLATE nocase); 1195 INSERT INTO h2 VALUES('One'); 1196 INSERT INTO h2 VALUES('Two'); 1197 INSERT INTO h2 VALUES('Three'); 1198 INSERT INTO h2 VALUES('Four'); 1199 INSERT INTO h2 VALUES('one'); 1200 INSERT INTO h2 VALUES('two'); 1201 INSERT INTO h2 VALUES('three'); 1202 INSERT INTO h2 VALUES('four'); 1203 1204 CREATE TABLE h3(c, d); 1205 INSERT INTO h3 VALUES(1, NULL); 1206 INSERT INTO h3 VALUES(2, NULL); 1207 INSERT INTO h3 VALUES(3, NULL); 1208 INSERT INTO h3 VALUES(4, '2'); 1209 INSERT INTO h3 VALUES(5, NULL); 1210 INSERT INTO h3 VALUES(6, '2,3'); 1211 INSERT INTO h3 VALUES(7, NULL); 1212 INSERT INTO h3 VALUES(8, '2,4'); 1213 INSERT INTO h3 VALUES(9, '3'); 1214 } {} 1215 1216 # EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may 1217 # follow the SELECT keyword in a simple SELECT statement. 1218 # 1219 do_select_tests e_select-5.1 { 1220 1 "SELECT ALL a FROM h1" {1 1 1 4 4 4} 1221 2 "SELECT DISTINCT a FROM h1" {1 4} 1222 } 1223 1224 # EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then 1225 # the entire set of result rows are returned by the SELECT. 1226 # 1227 # EVIDENCE-OF: R-01256-01950 If neither ALL or DISTINCT are present, 1228 # then the behavior is as if ALL were specified. 1229 # 1230 # EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT, 1231 # then duplicate rows are removed from the set of result rows before it 1232 # is returned. 1233 # 1234 # The three testable statements above are tested by e_select-5.2.*, 1235 # 5.3.* and 5.4.* respectively. 1236 # 1237 do_select_tests e_select-5 { 1238 3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four} 1239 3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four} 1240 1241 3.1 "SELECT x FROM h2" {One Two Three Four one two three four} 1242 3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four} 1243 1244 4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four} 1245 4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four} 1246 } 1247 1248 # EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate 1249 # rows, two NULL values are considered to be equal. 1250 # 1251 do_select_tests e_select-5.5 { 1252 1 "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3} 1253 } 1254 1255 # EVIDENCE-OF: R-47709-27231 The usual rules apply for selecting a 1256 # collation sequence to compare text values. 1257 # 1258 do_select_tests e_select-5.6 { 1259 1 "SELECT DISTINCT b FROM h1" {one I i four IV iv} 1260 2 "SELECT DISTINCT b COLLATE nocase FROM h1" {one I four IV} 1261 3 "SELECT DISTINCT x FROM h2" {One Two Three Four} 1262 4 "SELECT DISTINCT x COLLATE binary FROM h2" { 1263 One Two Three Four one two three four 1264 } 1265 } 1266 1267 #------------------------------------------------------------------------- 1268 # The following tests - e_select-7.* - test that statements made to do 1269 # with compound SELECT statements are correct. 1270 # 1271 1272 # EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent 1273 # SELECTs must return the same number of result columns. 1274 # 1275 # All the other tests in this section use compound SELECTs created 1276 # using component SELECTs that do return the same number of columns. 1277 # So the tests here just show that it is an error to attempt otherwise. 1278 # 1279 drop_all_tables 1280 do_execsql_test e_select-7.1.0 { 1281 CREATE TABLE j1(a, b, c); 1282 CREATE TABLE j2(e, f); 1283 CREATE TABLE j3(g); 1284 } {} 1285 do_select_tests e_select-7.1 -error { 1286 SELECTs to the left and right of %s do not have the same number of result columns 1287 } { 1288 1 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}} 1289 2 "SELECT * FROM j1 UNION ALL SELECT * FROM j3" {{UNION ALL}} 1290 3 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}} 1291 4 "SELECT a, b FROM j1 UNION ALL SELECT * FROM j3,j2" {{UNION ALL}} 1292 5 "SELECT * FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}} 1293 1294 6 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION} 1295 7 "SELECT * FROM j1 UNION SELECT * FROM j3" {UNION} 1296 8 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION} 1297 9 "SELECT a, b FROM j1 UNION SELECT * FROM j3,j2" {UNION} 1298 10 "SELECT * FROM j3,j2 UNION SELECT a, b FROM j1" {UNION} 1299 1300 11 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT} 1301 12 "SELECT * FROM j1 INTERSECT SELECT * FROM j3" {INTERSECT} 1302 13 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT} 1303 14 "SELECT a, b FROM j1 INTERSECT SELECT * FROM j3,j2" {INTERSECT} 1304 15 "SELECT * FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT} 1305 1306 16 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT} 1307 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j3" {EXCEPT} 1308 18 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT} 1309 19 "SELECT a, b FROM j1 EXCEPT SELECT * FROM j3,j2" {EXCEPT} 1310 20 "SELECT * FROM j3,j2 EXCEPT SELECT a, b FROM j1" {EXCEPT} 1311 } 1312 1313 # EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must 1314 # be simple SELECT statements, they may not contain ORDER BY or LIMIT 1315 # clauses. 1316 # 1317 foreach {tn select op1 op2} { 1318 1 "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3" 1319 {ORDER BY} {UNION ALL} 1320 2 "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2" 1321 {ORDER BY} {UNION ALL} 1322 3 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2" 1323 {ORDER BY} {UNION ALL} 1324 4 "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3" 1325 LIMIT {UNION ALL} 1326 5 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3" 1327 LIMIT {UNION ALL} 1328 6 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3" 1329 LIMIT {UNION ALL} 1330 1331 7 "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3" 1332 {ORDER BY} {UNION} 1333 8 "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2" 1334 {ORDER BY} {UNION} 1335 9 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2" 1336 {ORDER BY} {UNION} 1337 10 "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3" 1338 LIMIT {UNION} 1339 11 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3" 1340 LIMIT {UNION} 1341 12 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3" 1342 LIMIT {UNION} 1343 1344 13 "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3" 1345 {ORDER BY} {EXCEPT} 1346 14 "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2" 1347 {ORDER BY} {EXCEPT} 1348 15 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2" 1349 {ORDER BY} {EXCEPT} 1350 16 "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3" 1351 LIMIT {EXCEPT} 1352 17 "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3" 1353 LIMIT {EXCEPT} 1354 18 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3" 1355 LIMIT {EXCEPT} 1356 1357 19 "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3" 1358 {ORDER BY} {INTERSECT} 1359 20 "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2" 1360 {ORDER BY} {INTERSECT} 1361 21 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2" 1362 {ORDER BY} {INTERSECT} 1363 22 "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3" 1364 LIMIT {INTERSECT} 1365 23 "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3" 1366 LIMIT {INTERSECT} 1367 24 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3" 1368 LIMIT {INTERSECT} 1369 } { 1370 set err "$op1 clause should come after $op2 not before" 1371 do_catchsql_test e_select-7.2.$tn $select [list 1 $err] 1372 } 1373 1374 # EVIDENCE-OF: R-45440-25633 ORDER BY and LIMIT clauses may only occur 1375 # at the end of the entire compound SELECT, and then only if the final 1376 # element of the compound is not a VALUES clause. 1377 # 1378 foreach {tn select} { 1379 1 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a" 1380 2 "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1" 1381 3 "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3" 1382 4 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10" 1383 5 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1384 6 "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1385 1386 7 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a" 1387 8 "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1" 1388 8b "VALUES('8b') UNION SELECT max(e) FROM j2 ORDER BY 1" 1389 9 "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3" 1390 10 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10" 1391 11 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1392 12 "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1393 1394 13 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a" 1395 14 "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1" 1396 15 "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3" 1397 16 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10" 1398 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1399 18 "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1400 1401 19 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a" 1402 20 "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1" 1403 21 "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3" 1404 22 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10" 1405 23 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1406 24 "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1407 } { 1408 do_test e_select-7.3.$tn { catch {execsql $select} msg } 0 1409 } 1410 foreach {tn select} { 1411 50 "SELECT * FROM j1 ORDER BY 1 UNION ALL SELECT * FROM j2,j3" 1412 51 "SELECT * FROM j1 LIMIT 1 UNION ALL SELECT * FROM j2,j3" 1413 52 "SELECT count(*) FROM j1 UNION ALL VALUES(11) ORDER BY 1" 1414 53 "SELECT count(*) FROM j1 UNION ALL VALUES(11) LIMIT 1" 1415 } { 1416 do_test e_select-7.3.$tn { catch {execsql $select} msg } 1 1417 } 1418 1419 # EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL 1420 # operator returns all the rows from the SELECT to the left of the UNION 1421 # ALL operator, and all the rows from the SELECT to the right of it. 1422 # 1423 drop_all_tables 1424 do_execsql_test e_select-7.4.0 { 1425 CREATE TABLE q1(a TEXT, b INTEGER, c); 1426 CREATE TABLE q2(d NUMBER, e BLOB); 1427 CREATE TABLE q3(f REAL, g); 1428 1429 INSERT INTO q1 VALUES(16, -87.66, NULL); 1430 INSERT INTO q1 VALUES('legible', 94, -42.47); 1431 INSERT INTO q1 VALUES('beauty', 36, NULL); 1432 1433 INSERT INTO q2 VALUES('legible', 1); 1434 INSERT INTO q2 VALUES('beauty', 2); 1435 INSERT INTO q2 VALUES(-65.91, 4); 1436 INSERT INTO q2 VALUES('emanating', -16.56); 1437 1438 INSERT INTO q3 VALUES('beauty', 2); 1439 INSERT INTO q3 VALUES('beauty', 2); 1440 } {} 1441 do_select_tests e_select-7.4 { 1442 1 {SELECT a FROM q1 UNION ALL SELECT d FROM q2} 1443 {16 legible beauty legible beauty -65.91 emanating} 1444 1445 2 {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1} 1446 {16 -87.66 {} x legible 1} 1447 1448 3 {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2} 1449 {3 -16.56} 1450 1451 4 {SELECT * FROM q2 UNION ALL SELECT * FROM q3} 1452 {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2} 1453 } 1454 1455 # EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as 1456 # UNION ALL, except that duplicate rows are removed from the final 1457 # result set. 1458 # 1459 do_select_tests e_select-7.5 { 1460 1 {SELECT a FROM q1 UNION SELECT d FROM q2} 1461 {-65.91 16 beauty emanating legible} 1462 1463 2 {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1} 1464 {16 -87.66 {} x legible 1} 1465 1466 3 {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2} 1467 {-16.56 3} 1468 1469 4 {SELECT * FROM q2 UNION SELECT * FROM q3} 1470 {-65.91 4 beauty 2 emanating -16.56 legible 1} 1471 } 1472 1473 # EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the 1474 # intersection of the results of the left and right SELECTs. 1475 # 1476 do_select_tests e_select-7.6 { 1477 1 {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible} 1478 2 {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2} 1479 } 1480 1481 # EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of 1482 # rows returned by the left SELECT that are not also returned by the 1483 # right-hand SELECT. 1484 # 1485 do_select_tests e_select-7.7 { 1486 1 {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16} 1487 1488 2 {SELECT * FROM q2 EXCEPT SELECT * FROM q3} 1489 {-65.91 4 emanating -16.56 legible 1} 1490 } 1491 1492 # EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results 1493 # of INTERSECT and EXCEPT operators before the result set is returned. 1494 # 1495 do_select_tests e_select-7.8 { 1496 0 {SELECT * FROM q3} {beauty 2 beauty 2} 1497 1498 1 {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2} 1499 2 {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1} {beauty 2} 1500 } 1501 1502 # EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate 1503 # rows for the results of compound SELECT operators, NULL values are 1504 # considered equal to other NULL values and distinct from all non-NULL 1505 # values. 1506 # 1507 db nullvalue null 1508 do_select_tests e_select-7.9 { 1509 1 {SELECT NULL UNION ALL SELECT NULL} {null null} 1510 2 {SELECT NULL UNION SELECT NULL} {null} 1511 3 {SELECT NULL INTERSECT SELECT NULL} {null} 1512 4 {SELECT NULL EXCEPT SELECT NULL} {} 1513 1514 5 {SELECT NULL UNION ALL SELECT 'ab'} {null ab} 1515 6 {SELECT NULL UNION SELECT 'ab'} {null ab} 1516 7 {SELECT NULL INTERSECT SELECT 'ab'} {} 1517 8 {SELECT NULL EXCEPT SELECT 'ab'} {null} 1518 1519 9 {SELECT NULL UNION ALL SELECT 0} {null 0} 1520 10 {SELECT NULL UNION SELECT 0} {null 0} 1521 11 {SELECT NULL INTERSECT SELECT 0} {} 1522 12 {SELECT NULL EXCEPT SELECT 0} {null} 1523 1524 13 {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2} 1525 14 {SELECT c FROM q1 UNION SELECT g FROM q3} {null -42.47 2} 1526 15 {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {} 1527 16 {SELECT c FROM q1 EXCEPT SELECT g FROM q3} {null -42.47} 1528 } 1529 db nullvalue {} 1530 1531 # EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two 1532 # text values is determined as if the columns of the left and right-hand 1533 # SELECT statements were the left and right-hand operands of the equals 1534 # (=) operator, except that greater precedence is not assigned to a 1535 # collation sequence specified with the postfix COLLATE operator. 1536 # 1537 drop_all_tables 1538 do_execsql_test e_select-7.10.0 { 1539 CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c); 1540 INSERT INTO y1 VALUES('Abc', 'abc', 'aBC'); 1541 } {} 1542 do_select_tests e_select-7.10 { 1543 1 {SELECT 'abc' UNION SELECT 'ABC'} {ABC abc} 1544 2 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC} 1545 3 {SELECT 'abc' UNION SELECT 'ABC' COLLATE nocase} {ABC} 1546 4 {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc} 1547 5 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC} 1548 1549 6 {SELECT a FROM y1 UNION SELECT b FROM y1} {abc} 1550 7 {SELECT b FROM y1 UNION SELECT a FROM y1} {Abc abc} 1551 8 {SELECT a FROM y1 UNION SELECT c FROM y1} {aBC} 1552 1553 9 {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC} 1554 } 1555 1556 # EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to 1557 # any values when comparing rows as part of a compound SELECT. 1558 # 1559 drop_all_tables 1560 do_execsql_test e_select-7.10.0 { 1561 CREATE TABLE w1(a TEXT, b NUMBER); 1562 CREATE TABLE w2(a, b TEXT); 1563 1564 INSERT INTO w1 VALUES('1', 4.1); 1565 INSERT INTO w2 VALUES(1, 4.1); 1566 } {} 1567 1568 do_select_tests e_select-7.11 { 1569 1 { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1} 1570 2 { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1} 1571 3 { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1} 1572 4 { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1} 1573 1574 5 { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {} 1575 6 { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {} 1576 7 { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {} 1577 8 { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {} 1578 1579 9 { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1} 1580 10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1} 1581 11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1} 1582 12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1} 1583 } 1584 1585 1586 # EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are 1587 # connected into a compound SELECT, they group from left to right. In 1588 # other words, if "A", "B" and "C" are all simple SELECT statements, (A 1589 # op B op C) is processed as ((A op B) op C). 1590 # 1591 # e_select-7.12.1: Precedence of UNION vs. INTERSECT 1592 # e_select-7.12.2: Precedence of UNION vs. UNION ALL 1593 # e_select-7.12.3: Precedence of UNION vs. EXCEPT 1594 # e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL 1595 # e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT 1596 # e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT 1597 # e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as 1598 # "(a EXCEPT b) EXCEPT c". 1599 # 1600 # The INTERSECT and EXCEPT operations are mutually commutative. So 1601 # the e_select-7.12.5 test cases do not prove very much. 1602 # 1603 drop_all_tables 1604 do_execsql_test e_select-7.12.0 { 1605 CREATE TABLE t1(x); 1606 INSERT INTO t1 VALUES(1); 1607 INSERT INTO t1 VALUES(2); 1608 INSERT INTO t1 VALUES(3); 1609 } {} 1610 foreach {tn select res} { 1611 1a "(1,2) INTERSECT (1) UNION (3)" {1 3} 1612 1b "(3) UNION (1,2) INTERSECT (1)" {1} 1613 1614 2a "(1,2) UNION (3) UNION ALL (1)" {1 2 3 1} 1615 2b "(1) UNION ALL (3) UNION (1,2)" {1 2 3} 1616 1617 3a "(1,2) UNION (3) EXCEPT (1)" {2 3} 1618 3b "(1,2) EXCEPT (3) UNION (1)" {1 2} 1619 1620 4a "(1,2) INTERSECT (1) UNION ALL (3)" {1 3} 1621 4b "(3) UNION (1,2) INTERSECT (1)" {1} 1622 1623 5a "(1,2) INTERSECT (2) EXCEPT (2)" {} 1624 5b "(2,3) EXCEPT (2) INTERSECT (2)" {} 1625 1626 6a "(2) UNION ALL (2) EXCEPT (2)" {} 1627 6b "(2) EXCEPT (2) UNION ALL (2)" {2} 1628 1629 7 "(2,3) EXCEPT (2) EXCEPT (3)" {} 1630 } { 1631 set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select] 1632 do_execsql_test e_select-7.12.$tn $select [list {*}$res] 1633 } 1634 1635 1636 #------------------------------------------------------------------------- 1637 # ORDER BY clauses 1638 # 1639 1640 drop_all_tables 1641 do_execsql_test e_select-8.1.0 { 1642 CREATE TABLE d1(x, y, z); 1643 1644 INSERT INTO d1 VALUES(1, 2, 3); 1645 INSERT INTO d1 VALUES(2, 5, -1); 1646 INSERT INTO d1 VALUES(1, 2, 8); 1647 INSERT INTO d1 VALUES(1, 2, 7); 1648 INSERT INTO d1 VALUES(2, 4, 93); 1649 INSERT INTO d1 VALUES(1, 2, -20); 1650 INSERT INTO d1 VALUES(1, 4, 93); 1651 INSERT INTO d1 VALUES(1, 5, -1); 1652 1653 CREATE TABLE d2(a, b); 1654 INSERT INTO d2 VALUES('gently', 'failings'); 1655 INSERT INTO d2 VALUES('commercials', 'bathrobe'); 1656 INSERT INTO d2 VALUES('iterate', 'sexton'); 1657 INSERT INTO d2 VALUES('babied', 'charitableness'); 1658 INSERT INTO d2 VALUES('solemnness', 'annexed'); 1659 INSERT INTO d2 VALUES('rejoicing', 'liabilities'); 1660 INSERT INTO d2 VALUES('pragmatist', 'guarded'); 1661 INSERT INTO d2 VALUES('barked', 'interrupted'); 1662 INSERT INTO d2 VALUES('reemphasizes', 'reply'); 1663 INSERT INTO d2 VALUES('lad', 'relenting'); 1664 } {} 1665 1666 # EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results 1667 # of evaluating the left-most expression in the ORDER BY list, then ties 1668 # are broken by evaluating the second left-most expression and so on. 1669 # 1670 do_select_tests e_select-8.1 { 1671 1 "SELECT * FROM d1 ORDER BY x, y, z" { 1672 1 2 -20 1 2 3 1 2 7 1 2 8 1673 1 4 93 1 5 -1 2 4 93 2 5 -1 1674 } 1675 } 1676 1677 # EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally 1678 # followed by one of the keywords ASC (smaller values are returned 1679 # first) or DESC (larger values are returned first). 1680 # 1681 # Test cases e_select-8.2.* test the above. 1682 # 1683 # EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows 1684 # are sorted in ascending (smaller values first) order by default. 1685 # 1686 # Test cases e_select-8.3.* test the above. All 8.3 test cases are 1687 # copies of 8.2 test cases with the explicit "ASC" removed. 1688 # 1689 do_select_tests e_select-8 { 1690 2.1 "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" { 1691 1 2 -20 1 2 3 1 2 7 1 2 8 1692 1 4 93 1 5 -1 2 4 93 2 5 -1 1693 } 1694 2.2 "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" { 1695 2 5 -1 2 4 93 1 5 -1 1 4 93 1696 1 2 8 1 2 7 1 2 3 1 2 -20 1697 } 1698 2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" { 1699 2 4 93 2 5 -1 1 2 8 1 2 7 1700 1 2 3 1 2 -20 1 4 93 1 5 -1 1701 } 1702 2.4 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" { 1703 2 4 93 2 5 -1 1 2 -20 1 2 3 1704 1 2 7 1 2 8 1 4 93 1 5 -1 1705 } 1706 1707 3.1 "SELECT * FROM d1 ORDER BY x, y, z" { 1708 1 2 -20 1 2 3 1 2 7 1 2 8 1709 1 4 93 1 5 -1 2 4 93 2 5 -1 1710 } 1711 3.3 "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" { 1712 2 4 93 2 5 -1 1 2 8 1 2 7 1713 1 2 3 1 2 -20 1 4 93 1 5 -1 1714 } 1715 3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" { 1716 2 4 93 2 5 -1 1 2 -20 1 2 3 1717 1 2 7 1 2 8 1 4 93 1 5 -1 1718 } 1719 } 1720 1721 # EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant 1722 # integer K then the expression is considered an alias for the K-th 1723 # column of the result set (columns are numbered from left to right 1724 # starting with 1). 1725 # 1726 do_select_tests e_select-8.4 { 1727 1 "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" { 1728 1 2 -20 1 2 3 1 2 7 1 2 8 1729 1 4 93 1 5 -1 2 4 93 2 5 -1 1730 } 1731 2 "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" { 1732 2 5 -1 2 4 93 1 5 -1 1 4 93 1733 1 2 8 1 2 7 1 2 3 1 2 -20 1734 } 1735 3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" { 1736 2 4 93 2 5 -1 1 2 8 1 2 7 1737 1 2 3 1 2 -20 1 4 93 1 5 -1 1738 } 1739 4 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" { 1740 2 4 93 2 5 -1 1 2 -20 1 2 3 1741 1 2 7 1 2 8 1 4 93 1 5 -1 1742 } 1743 5 "SELECT * FROM d1 ORDER BY 1, 2, 3" { 1744 1 2 -20 1 2 3 1 2 7 1 2 8 1745 1 4 93 1 5 -1 2 4 93 2 5 -1 1746 } 1747 6 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" { 1748 2 4 93 2 5 -1 1 2 8 1 2 7 1749 1 2 3 1 2 -20 1 4 93 1 5 -1 1750 } 1751 7 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" { 1752 2 4 93 2 5 -1 1 2 -20 1 2 3 1753 1 2 7 1 2 8 1 4 93 1 5 -1 1754 } 1755 8 "SELECT z, x FROM d1 ORDER BY 2" { 1756 /# 1 # 1 # 1 # 1 1757 # 1 # 1 # 2 # 2/ 1758 } 1759 9 "SELECT z, x FROM d1 ORDER BY 1" { 1760 /-20 1 -1 # -1 # 3 1 1761 7 1 8 1 93 # 93 #/ 1762 } 1763 } 1764 1765 # EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier 1766 # that corresponds to the alias of one of the output columns, then the 1767 # expression is considered an alias for that column. 1768 # 1769 do_select_tests e_select-8.5 { 1770 1 "SELECT z+1 AS abc FROM d1 ORDER BY abc" { 1771 -19 0 0 4 8 9 94 94 1772 } 1773 2 "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" { 1774 94 94 9 8 4 0 0 -19 1775 } 1776 3 "SELECT z AS x, x AS z FROM d1 ORDER BY z" { 1777 /# 1 # 1 # 1 # 1 # 1 # 1 # 2 # 2/ 1778 } 1779 4 "SELECT z AS x, x AS z FROM d1 ORDER BY x" { 1780 /-20 1 -1 # -1 # 3 1 7 1 8 1 93 # 93 #/ 1781 } 1782 } 1783 1784 # EVIDENCE-OF: R-65068-27207 Otherwise, if the ORDER BY expression is 1785 # any other expression, it is evaluated and the returned value used to 1786 # order the output rows. 1787 # 1788 # EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT, 1789 # then an ORDER BY may contain any arbitrary expressions. 1790 # 1791 do_select_tests e_select-8.6 { 1792 1 "SELECT * FROM d1 ORDER BY x+y+z" { 1793 1 2 -20 1 5 -1 1 2 3 2 5 -1 1794 1 2 7 1 2 8 1 4 93 2 4 93 1795 } 1796 2 "SELECT * FROM d1 ORDER BY x*z" { 1797 1 2 -20 2 5 -1 1 5 -1 1 2 3 1798 1 2 7 1 2 8 1 4 93 2 4 93 1799 } 1800 3 "SELECT * FROM d1 ORDER BY y*z" { 1801 1 2 -20 2 5 -1 1 5 -1 1 2 3 1802 1 2 7 1 2 8 2 4 93 1 4 93 1803 } 1804 } 1805 1806 # EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound 1807 # SELECT, then ORDER BY expressions that are not aliases to output 1808 # columns must be exactly the same as an expression used as an output 1809 # column. 1810 # 1811 do_select_tests e_select-8.7.1 -error { 1812 %s ORDER BY term does not match any column in the result set 1813 } { 1814 1 "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" 1st 1815 2 "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd 1816 } 1817 1818 do_select_tests e_select-8.7.2 { 1819 1 "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" { 1820 -20 -2 -1 3 7 8 93 186 babied barked commercials gently 1821 iterate lad pragmatist reemphasizes rejoicing solemnness 1822 } 1823 2 "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" { 1824 1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0 1825 babied charitableness barked interrupted commercials bathrobe gently 1826 failings iterate sexton lad relenting pragmatist guarded reemphasizes reply 1827 rejoicing liabilities solemnness annexed 1828 } 1829 } 1830 1831 do_execsql_test e_select-8.8.0 { 1832 CREATE TABLE d3(a); 1833 INSERT INTO d3 VALUES('text'); 1834 INSERT INTO d3 VALUES(14.1); 1835 INSERT INTO d3 VALUES(13); 1836 INSERT INTO d3 VALUES(X'78787878'); 1837 INSERT INTO d3 VALUES(15); 1838 INSERT INTO d3 VALUES(12.9); 1839 INSERT INTO d3 VALUES(null); 1840 1841 CREATE TABLE d4(x COLLATE nocase); 1842 INSERT INTO d4 VALUES('abc'); 1843 INSERT INTO d4 VALUES('ghi'); 1844 INSERT INTO d4 VALUES('DEF'); 1845 INSERT INTO d4 VALUES('JKL'); 1846 } {} 1847 1848 # EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values 1849 # are compared in the same way as for comparison expressions. 1850 # 1851 # The following tests verify that values of different types are sorted 1852 # correctly, and that mixed real and integer values are compared properly. 1853 # 1854 do_execsql_test e_select-8.8.1 { 1855 SELECT a FROM d3 ORDER BY a 1856 } {{} 12.9 13 14.1 15 text xxxx} 1857 do_execsql_test e_select-8.8.2 { 1858 SELECT a FROM d3 ORDER BY a DESC 1859 } {xxxx text 15 14.1 13 12.9 {}} 1860 1861 1862 # EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a 1863 # collation sequence using the postfix COLLATE operator, then the 1864 # specified collation sequence is used. 1865 # 1866 do_execsql_test e_select-8.9.1 { 1867 SELECT x FROM d4 ORDER BY 1 COLLATE binary 1868 } {DEF JKL abc ghi} 1869 do_execsql_test e_select-8.9.2 { 1870 SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase 1871 } {abc DEF ghi JKL} 1872 1873 # EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is 1874 # an alias to an expression that has been assigned a collation sequence 1875 # using the postfix COLLATE operator, then the collation sequence 1876 # assigned to the aliased expression is used. 1877 # 1878 # In the test 8.10.2, the only result-column expression has no alias. So the 1879 # ORDER BY expression is not a reference to it and therefore does not inherit 1880 # the collation sequence. In test 8.10.3, "x" is the alias (as well as the 1881 # column name), so the ORDER BY expression is interpreted as an alias and the 1882 # collation sequence attached to the result column is used for sorting. 1883 # 1884 do_execsql_test e_select-8.10.1 { 1885 SELECT x COLLATE binary FROM d4 ORDER BY 1 1886 } {DEF JKL abc ghi} 1887 do_execsql_test e_select-8.10.2 { 1888 SELECT x COLLATE binary FROM d4 ORDER BY x 1889 } {abc DEF ghi JKL} 1890 do_execsql_test e_select-8.10.3 { 1891 SELECT x COLLATE binary AS x FROM d4 ORDER BY x 1892 } {DEF JKL abc ghi} 1893 1894 # EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a 1895 # column or an alias of an expression that is a column, then the default 1896 # collation sequence for the column is used. 1897 # 1898 do_execsql_test e_select-8.11.1 { 1899 SELECT x AS y FROM d4 ORDER BY y 1900 } {abc DEF ghi JKL} 1901 do_execsql_test e_select-8.11.2 { 1902 SELECT x||'' FROM d4 ORDER BY x 1903 } {abc DEF ghi JKL} 1904 1905 # EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is 1906 # used. 1907 # 1908 do_execsql_test e_select-8.12.1 { 1909 SELECT x FROM d4 ORDER BY x||'' 1910 } {DEF JKL abc ghi} 1911 1912 # EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer 1913 # alias, then SQLite searches the left-most SELECT in the compound for a 1914 # result column that matches either the second or third rules above. If 1915 # a match is found, the search stops and the expression is handled as an 1916 # alias for the result column that it has been matched against. 1917 # Otherwise, the next SELECT to the right is tried, and so on. 1918 # 1919 do_execsql_test e_select-8.13.0 { 1920 CREATE TABLE d5(a, b); 1921 CREATE TABLE d6(c, d); 1922 CREATE TABLE d7(e, f); 1923 1924 INSERT INTO d5 VALUES(1, 'f'); 1925 INSERT INTO d6 VALUES(2, 'e'); 1926 INSERT INTO d7 VALUES(3, 'd'); 1927 INSERT INTO d5 VALUES(4, 'c'); 1928 INSERT INTO d6 VALUES(5, 'b'); 1929 INSERT INTO d7 VALUES(6, 'a'); 1930 1931 CREATE TABLE d8(x COLLATE nocase); 1932 CREATE TABLE d9(y COLLATE nocase); 1933 1934 INSERT INTO d8 VALUES('a'); 1935 INSERT INTO d9 VALUES('B'); 1936 INSERT INTO d8 VALUES('c'); 1937 INSERT INTO d9 VALUES('D'); 1938 } {} 1939 do_select_tests e_select-8.13 { 1940 1 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1941 ORDER BY a 1942 } {1 2 3 4 5 6} 1943 2 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1944 ORDER BY c 1945 } {1 2 3 4 5 6} 1946 3 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1947 ORDER BY e 1948 } {1 2 3 4 5 6} 1949 4 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1950 ORDER BY 1 1951 } {1 2 3 4 5 6} 1952 1953 5 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b } 1954 {f 1 c 4 4 c 1 f} 1955 6 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 } 1956 {f 1 c 4 4 c 1 f} 1957 1958 7 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a } 1959 {1 f 4 c c 4 f 1} 1960 8 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 } 1961 {1 f 4 c c 4 f 1} 1962 1963 9 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 1964 {f 2 c 5 4 c 1 f} 1965 10 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 } 1966 {f 2 c 5 4 c 1 f} 1967 1968 11 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 1969 {2 f 5 c c 5 f 2} 1970 12 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 } 1971 {2 f 5 c c 5 f 2} 1972 } 1973 1974 # EVIDENCE-OF: R-39265-04070 If no matching expression can be found in 1975 # the result columns of any constituent SELECT, it is an error. 1976 # 1977 do_select_tests e_select-8.14 -error { 1978 %s ORDER BY term does not match any column in the result set 1979 } { 1980 1 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 } 1st 1981 2 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 } 2nd 1982 3 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' } 1st 1983 4 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah } 1st 1984 5 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d } 3rd 1985 6 { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b } 4th 1986 } 1987 1988 # EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is 1989 # processed separately and may be matched against result columns from 1990 # different SELECT statements in the compound. 1991 # 1992 do_select_tests e_select-8.15 { 1993 1 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d } 1994 {1 e 1 f 4 b 4 c} 1995 2 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b } 1996 {1 e 1 f 4 b 4 c} 1997 3 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 } 1998 {1 e 1 f 4 b 4 c} 1999 } 2000 2001 2002 #------------------------------------------------------------------------- 2003 # Tests related to statements made about the LIMIT/OFFSET clause. 2004 # 2005 do_execsql_test e_select-9.0 { 2006 CREATE TABLE f1(a, b); 2007 INSERT INTO f1 VALUES(26, 'z'); 2008 INSERT INTO f1 VALUES(25, 'y'); 2009 INSERT INTO f1 VALUES(24, 'x'); 2010 INSERT INTO f1 VALUES(23, 'w'); 2011 INSERT INTO f1 VALUES(22, 'v'); 2012 INSERT INTO f1 VALUES(21, 'u'); 2013 INSERT INTO f1 VALUES(20, 't'); 2014 INSERT INTO f1 VALUES(19, 's'); 2015 INSERT INTO f1 VALUES(18, 'r'); 2016 INSERT INTO f1 VALUES(17, 'q'); 2017 INSERT INTO f1 VALUES(16, 'p'); 2018 INSERT INTO f1 VALUES(15, 'o'); 2019 INSERT INTO f1 VALUES(14, 'n'); 2020 INSERT INTO f1 VALUES(13, 'm'); 2021 INSERT INTO f1 VALUES(12, 'l'); 2022 INSERT INTO f1 VALUES(11, 'k'); 2023 INSERT INTO f1 VALUES(10, 'j'); 2024 INSERT INTO f1 VALUES(9, 'i'); 2025 INSERT INTO f1 VALUES(8, 'h'); 2026 INSERT INTO f1 VALUES(7, 'g'); 2027 INSERT INTO f1 VALUES(6, 'f'); 2028 INSERT INTO f1 VALUES(5, 'e'); 2029 INSERT INTO f1 VALUES(4, 'd'); 2030 INSERT INTO f1 VALUES(3, 'c'); 2031 INSERT INTO f1 VALUES(2, 'b'); 2032 INSERT INTO f1 VALUES(1, 'a'); 2033 } {} 2034 2035 # EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the 2036 # LIMIT clause, so long as it evaluates to an integer or a value that 2037 # can be losslessly converted to an integer. 2038 # 2039 do_select_tests e_select-9.1 { 2040 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e} 2041 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e} 2042 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') } 2043 {a b c d e} 2044 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e} 2045 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e} 2046 } 2047 2048 # EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value 2049 # or any other value that cannot be losslessly converted to an integer, 2050 # an error is returned. 2051 # 2052 2053 do_select_tests e_select-9.2 -error "datatype mismatch" { 2054 1 { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {} 2055 2 { SELECT b FROM f1 ORDER BY a LIMIT NULL } {} 2056 3 { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {} 2057 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {} 2058 5 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {} 2059 } 2060 2061 # EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a 2062 # negative value, then there is no upper bound on the number of rows 2063 # returned. 2064 # 2065 do_select_tests e_select-9.4 { 2066 1 { SELECT b FROM f1 ORDER BY a LIMIT -1 } 2067 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2068 2 { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 } 2069 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2070 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 } 2071 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2072 } 2073 2074 # EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N 2075 # rows of its result set only, where N is the value that the LIMIT 2076 # expression evaluates to. 2077 # 2078 do_select_tests e_select-9.5 { 2079 1 { SELECT b FROM f1 ORDER BY a LIMIT 0 } {} 2080 2 { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w} 2081 3 { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s} 2082 4 { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o} 2083 } 2084 2085 # EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return 2086 # less than N rows without a LIMIT clause, then the entire result set is 2087 # returned. 2088 # 2089 do_select_tests e_select-9.6 { 2090 1 { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z} 2091 2 { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5} 2092 } 2093 2094 2095 # EVIDENCE-OF: R-24188-24349 The expression attached to the optional 2096 # OFFSET clause that may follow a LIMIT clause must also evaluate to an 2097 # integer, or a value that can be losslessly converted to an integer. 2098 # 2099 foreach {tn select} { 2100 1 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' } 2101 2 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL } 2102 3 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' } 2103 4 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 } 2104 5 { SELECT b FROM f1 ORDER BY a 2105 LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1) 2106 } 2107 } { 2108 do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}} 2109 } 2110 2111 # EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then 2112 # the first M rows are omitted from the result set returned by the 2113 # SELECT statement and the next N rows are returned, where M and N are 2114 # the values that the OFFSET and LIMIT clauses evaluate to, 2115 # respectively. 2116 # 2117 do_select_tests e_select-9.8 { 2118 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o} 2119 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o} 2120 3 { SELECT b FROM f1 ORDER BY a 2121 LIMIT (SELECT a FROM f1 WHERE b='j') 2122 OFFSET (SELECT a FROM f1 WHERE b='b') 2123 } {c d e f g h i j k l} 2124 4 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h} 2125 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e} 2126 6 { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {} 2127 7 { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r} 2128 } 2129 2130 # EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than 2131 # M+N rows if it did not have a LIMIT clause, then the first M rows are 2132 # skipped and the remaining rows (if any) are returned. 2133 # 2134 do_select_tests e_select-9.9 { 2135 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z} 2136 2 { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1} 2137 } 2138 2139 2140 # EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a 2141 # negative value, the results are the same as if it had evaluated to 2142 # zero. 2143 # 2144 do_select_tests e_select-9.10 { 2145 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e} 2146 2 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e} 2147 3 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0 } {a b c d e} 2148 } 2149 2150 # EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the 2151 # LIMIT clause may specify two scalar expressions separated by a comma. 2152 # 2153 # EVIDENCE-OF: R-33788-46243 In this case, the first expression is used 2154 # as the OFFSET expression and the second as the LIMIT expression. 2155 # 2156 do_select_tests e_select-9.11 { 2157 1 { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o} 2158 2 { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o} 2159 3 { SELECT b FROM f1 ORDER BY a 2160 LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j') 2161 } {c d e f g h i j k l} 2162 4 { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h} 2163 5 { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e} 2164 6 { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {} 2165 7 { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r} 2166 2167 8 { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z} 2168 9 { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1} 2169 2170 10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e} 2171 11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e} 2172 12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e} 2173 } 2174 2175 finish_test