modernc.org/cc@v1.0.1/v2/testdata/_sqlite/test/malloc5.test (about) 1 # 2005 November 30 2 # 3 # The author disclaims copyright to this source code. In place of 4 # a legal notice, here is a blessing: 5 # 6 # May you do good and not evil. 7 # May you find forgiveness for yourself and forgive others. 8 # May you share freely, never taking more than you give. 9 # 10 #*********************************************************************** 11 # 12 # This file contains test cases focused on the two memory-management APIs, 13 # sqlite3_soft_heap_limit() and sqlite3_release_memory(). 14 # 15 # Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding 16 # the configured soft heap limit could cause sqlite to upgrade database 17 # locks and flush dirty pages to the file system. As of 3.6.2, this is 18 # no longer the case. In version 3.6.2, sqlite3_release_memory() only 19 # reclaims clean pages. This test file has been updated accordingly. 20 # 21 # $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ 22 23 set testdir [file dirname $argv0] 24 source $testdir/tester.tcl 25 source $testdir/malloc_common.tcl 26 db close 27 28 # Only run these tests if memory debugging is turned on. 29 # 30 if {!$MEMDEBUG} { 31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." 32 finish_test 33 return 34 } 35 36 # Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. 37 ifcapable !memorymanage { 38 finish_test 39 return 40 } 41 42 # The sizes of memory allocations from system malloc() might vary, 43 # depending on the memory allocator algorithms used. The following 44 # routine is designed to support answers that fall within a range 45 # of values while also supplying easy-to-understand "expected" values 46 # when errors occur. 47 # 48 proc value_in_range {target x args} { 49 set v [lindex $args 0] 50 if {$v!=""} { 51 if {$v<$target*$x} {return $v} 52 if {$v>$target/$x} {return $v} 53 } 54 return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]" 55 } 56 set mrange 0.98 ;# plus or minus 2% 57 58 test_set_config_pagecache 0 100 59 60 sqlite3_soft_heap_limit 0 61 sqlite3 db test.db 62 # db eval {PRAGMA cache_size=1} 63 64 do_test malloc5-1.1 { 65 # Simplest possible test. Call sqlite3_release_memory when there is exactly 66 # one unused page in a single pager cache. The page cannot be freed, as 67 # it is dirty. So sqlite3_release_memory() returns 0. 68 # 69 execsql { 70 PRAGMA auto_vacuum=OFF; 71 BEGIN; 72 CREATE TABLE abc(a, b, c); 73 } 74 sqlite3_release_memory 75 } {0} 76 77 do_test malloc5-1.2 { 78 # Test that the transaction started in the above test is still active. 79 # The lock on the database file should not have been upgraded (this was 80 # not the case before version 3.6.2). 81 # 82 sqlite3 db2 test.db 83 execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2 84 } {} 85 do_test malloc5-1.3 { 86 # Call [sqlite3_release_memory] when there is exactly one unused page 87 # in the cache belonging to db2. 88 # 89 set ::pgalloc [sqlite3_release_memory] 90 value_in_range 1288 0.75 91 } [value_in_range 1288 0.75] 92 93 do_test malloc5-1.4 { 94 # Commit the transaction and open a new one. Read 1 page into the cache. 95 # Because the page is not dirty, it is eligible for collection even 96 # before the transaction is concluded. 97 # 98 execsql { 99 COMMIT; 100 BEGIN; 101 SELECT * FROM abc; 102 } 103 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 104 } [value_in_range $::pgalloc $::mrange] 105 106 do_test malloc5-1.5 { 107 # Conclude the transaction opened in the previous [do_test] block. This 108 # causes another page (page 1) to become eligible for recycling. 109 # 110 execsql { COMMIT } 111 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 112 } [value_in_range $::pgalloc $::mrange] 113 114 do_test malloc5-1.6 { 115 # Manipulate the cache so that it contains two unused pages. One requires 116 # a journal-sync to free, the other does not. 117 db2 close 118 execsql { 119 BEGIN; 120 CREATE TABLE def(d, e, f); 121 SELECT * FROM abc; 122 } 123 value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500] 124 } [value_in_range $::pgalloc $::mrange] 125 do_test malloc5-1.7 { 126 # Database should not be locked this time. 127 sqlite3 db2 test.db 128 catchsql { SELECT * FROM abc } db2 129 } {0 {}} 130 do_test malloc5-1.8 { 131 # Try to release another block of memory. This will fail as the only 132 # pages currently in the cache are dirty (page 3) or pinned (page 1). 133 db2 close 134 sqlite3_release_memory 500 135 } 0 136 do_test malloc5-1.8 { 137 # Database is still not locked. 138 # 139 sqlite3 db2 test.db 140 catchsql { SELECT * FROM abc } db2 141 } {0 {}} 142 do_test malloc5-1.9 { 143 execsql { 144 COMMIT; 145 } 146 } {} 147 148 do_test malloc5-2.1 { 149 # Put some data in tables abc and def. Both tables are still wholly 150 # contained within their root pages. 151 execsql { 152 INSERT INTO abc VALUES(1, 2, 3); 153 INSERT INTO abc VALUES(4, 5, 6); 154 INSERT INTO def VALUES(7, 8, 9); 155 INSERT INTO def VALUES(10,11,12); 156 } 157 } {} 158 do_test malloc5-2.2 { 159 # Load the root-page for table def into the cache. Then query table abc. 160 # Halfway through the query call sqlite3_release_memory(). The goal of this 161 # test is to make sure we don't free pages that are in use (specifically, 162 # the root of table abc). 163 sqlite3_release_memory 164 set nRelease 0 165 execsql { 166 BEGIN; 167 SELECT * FROM def; 168 } 169 set data [list] 170 db eval {SELECT * FROM abc} { 171 incr nRelease [sqlite3_release_memory] 172 lappend data $a $b $c 173 } 174 execsql { 175 COMMIT; 176 } 177 list $nRelease $data 178 } [list $pgalloc [list 1 2 3 4 5 6]] 179 180 do_test malloc5-3.1 { 181 # Simple test to show that if two pagers are opened from within this 182 # thread, memory is freed from both when sqlite3_release_memory() is 183 # called. 184 execsql { 185 BEGIN; 186 SELECT * FROM abc; 187 } 188 execsql { 189 SELECT * FROM sqlite_master; 190 BEGIN; 191 SELECT * FROM def; 192 } db2 193 value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory] 194 } [value_in_range [expr $::pgalloc * 2] 0.99] 195 do_test malloc5-3.2 { 196 concat \ 197 [execsql {SELECT * FROM abc; COMMIT}] \ 198 [execsql {SELECT * FROM def; COMMIT} db2] 199 } {1 2 3 4 5 6 7 8 9 10 11 12} 200 201 db2 close 202 puts "Highwater mark: [sqlite3_memory_highwater]" 203 204 # The following two test cases each execute a transaction in which 205 # 10000 rows are inserted into table abc. The first test case is used 206 # to ensure that more than 1MB of dynamic memory is used to perform 207 # the transaction. 208 # 209 # The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) 210 # and tests to see that this limit is not exceeded at any point during 211 # transaction execution. 212 # 213 # Before executing malloc5-4.* we save the value of the current soft heap 214 # limit in variable ::soft_limit. The original value is restored after 215 # running the tests. 216 # 217 set ::soft_limit [sqlite3_soft_heap_limit -1] 218 execsql {PRAGMA cache_size=2000} 219 do_test malloc5-4.1 { 220 execsql {BEGIN;} 221 execsql {DELETE FROM abc;} 222 for {set i 0} {$i < 10000} {incr i} { 223 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" 224 } 225 execsql {COMMIT;} 226 db cache flush 227 sqlite3_release_memory 228 sqlite3_memory_highwater 1 229 execsql {SELECT * FROM abc} 230 set nMaxBytes [sqlite3_memory_highwater 1] 231 puts -nonewline " (Highwater mark: $nMaxBytes) " 232 expr $nMaxBytes > 1000000 233 } {1} 234 do_test malloc5-4.2 { 235 db eval {PRAGMA cache_size=1} 236 db cache flush 237 sqlite3_release_memory 238 sqlite3_soft_heap_limit 200000 239 sqlite3_memory_highwater 1 240 execsql {SELECT * FROM abc} 241 set nMaxBytes [sqlite3_memory_highwater 1] 242 puts -nonewline " (Highwater mark: $nMaxBytes) " 243 expr $nMaxBytes <= 210000 244 } {1} 245 do_test malloc5-4.3 { 246 # Check that the content of table abc is at least roughly as expected. 247 execsql { 248 SELECT count(*), sum(a), sum(b) FROM abc; 249 } 250 } [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] 251 252 # Restore the soft heap limit. 253 sqlite3_soft_heap_limit $::soft_limit 254 255 # Test that there are no problems calling sqlite3_release_memory when 256 # there are open in-memory databases. 257 # 258 # At one point these tests would cause a seg-fault. 259 # 260 do_test malloc5-5.1 { 261 db close 262 sqlite3 db :memory: 263 execsql { 264 BEGIN; 265 CREATE TABLE abc(a, b, c); 266 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); 267 INSERT INTO abc SELECT * FROM abc; 268 INSERT INTO abc SELECT * FROM abc; 269 INSERT INTO abc SELECT * FROM abc; 270 INSERT INTO abc SELECT * FROM abc; 271 INSERT INTO abc SELECT * FROM abc; 272 INSERT INTO abc SELECT * FROM abc; 273 INSERT INTO abc SELECT * FROM abc; 274 } 275 sqlite3_release_memory 276 } 0 277 do_test malloc5-5.2 { 278 sqlite3_soft_heap_limit 5000 279 execsql { 280 COMMIT; 281 PRAGMA temp_store = memory; 282 SELECT * FROM abc ORDER BY a; 283 } 284 expr 1 285 } {1} 286 sqlite3_soft_heap_limit $::soft_limit 287 288 #------------------------------------------------------------------------- 289 # The following test cases (malloc5-6.*) test the new global LRU list 290 # used to determine the pages to recycle when sqlite3_release_memory is 291 # called and there is more than one pager open. 292 # 293 proc nPage {db} { 294 set bt [btree_from_db $db] 295 array set stats [btree_pager_stats $bt] 296 set stats(page) 297 } 298 db close 299 forcedelete test.db test.db-journal test2.db test2.db-journal 300 301 # This block of test-cases (malloc5-6.1.*) prepares two database files 302 # for the subsequent tests. 303 do_test malloc5-6.1.1 { 304 sqlite3 db test.db 305 execsql { 306 PRAGMA page_size=1024; 307 PRAGMA default_cache_size=2; 308 } 309 execsql { 310 PRAGMA temp_store = memory; 311 BEGIN; 312 CREATE TABLE abc(a PRIMARY KEY, b, c); 313 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); 314 INSERT INTO abc 315 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 316 INSERT INTO abc 317 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 318 INSERT INTO abc 319 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 320 INSERT INTO abc 321 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 322 INSERT INTO abc 323 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 324 INSERT INTO abc 325 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 326 COMMIT; 327 } 328 forcecopy test.db test2.db 329 sqlite3 db2 test2.db 330 db2 eval {PRAGMA cache_size=2} 331 list \ 332 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] 333 } {1 1} 334 do_test malloc5-6.1.2 { 335 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] 336 } {2 2} 337 338 do_test malloc5-6.2.1 { 339 execsql {SELECT * FROM abc} db2 340 execsql {SELECT * FROM abc} db 341 expr [nPage db] + [nPage db2] 342 } {4} 343 344 do_test malloc5-6.2.2 { 345 # If we now try to reclaim some memory, it should come from the db2 cache. 346 sqlite3_release_memory 3000 347 expr [nPage db] + [nPage db2] 348 } {1} 349 do_test malloc5-6.2.3 { 350 # Access the db2 cache again, so that all the db2 pages have been used 351 # more recently than all the db pages. Then try to reclaim 3000 bytes. 352 # This time, 3 pages should be pulled from the db cache. 353 execsql { SELECT * FROM abc } db2 354 sqlite3_release_memory 3000 355 expr [nPage db] + [nPage db2] 356 } {0} 357 358 do_test malloc5-6.3.1 { 359 # Now open a transaction and update 2 pages in the db2 cache. Then 360 # do a SELECT on the db cache so that all the db pages are more recently 361 # used than the db2 pages. When we try to free memory, SQLite should 362 # free the non-dirty db2 pages, then the db pages, then finally use 363 # sync() to free up the dirty db2 pages. The only page that cannot be 364 # freed is page1 of db2. Because there is an open transaction, the 365 # btree layer holds a reference to page 1 in the db2 cache. 366 # 367 # UPDATE: No longer. As release_memory() does not cause a sync() 368 execsql { 369 BEGIN; 370 UPDATE abc SET c = randstr(100,100) 371 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); 372 } db2 373 execsql { SELECT * FROM abc } db 374 expr [nPage db] + [nPage db2] 375 } {4} 376 do_test malloc5-6.3.2 { 377 # Try to release 7700 bytes. This should release all the 378 # non-dirty pages held by db2. 379 sqlite3_release_memory [expr 7*1132] 380 list [nPage db] [nPage db2] 381 } {0 3} 382 do_test malloc5-6.3.3 { 383 # Try to release another 1000 bytes. This should come fromt the db 384 # cache, since all three pages held by db2 are either in-use or diry. 385 sqlite3_release_memory 1000 386 list [nPage db] [nPage db2] 387 } {0 3} 388 do_test malloc5-6.3.4 { 389 # Now release 9900 more (about 9 pages worth). This should expunge 390 # the rest of the db cache. But the db2 cache remains intact, because 391 # SQLite tries to avoid calling sync(). 392 if {$::tcl_platform(wordSize)==8} { 393 sqlite3_release_memory 10500 394 } else { 395 sqlite3_release_memory 9900 396 } 397 list [nPage db] [nPage db2] 398 } {0 3} 399 do_test malloc5-6.3.5 { 400 # But if we are really insistent, SQLite will consent to call sync() 401 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not 402 # call sync() in this scenario. So no further memory can be reclaimed. 403 sqlite3_release_memory 1000 404 list [nPage db] [nPage db2] 405 } {0 3} 406 do_test malloc5-6.3.6 { 407 # The referenced page (page 1 of the db2 cache) will not be freed no 408 # matter how much memory we ask for: 409 sqlite3_release_memory 31459 410 list [nPage db] [nPage db2] 411 } {0 3} 412 413 db2 close 414 415 sqlite3_soft_heap_limit $::soft_limit 416 test_restore_config_pagecache 417 finish_test 418 catch {db close}