modernc.org/gc@v1.0.1-0.20240304020402-f0dba7c97c2b/testdata/errchk/test/cmplxdivide.c (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This C program generates the file cmplxdivide1.go. It uses the 6 // output of the operations by C99 as the reference to check 7 // the implementation of complex numbers in Go. 8 // The generated file, cmplxdivide1.go, is compiled along 9 // with the driver cmplxdivide.go (the names are confusing 10 // and unimaginative) to run the actual test. This is done by 11 // the usual test runner. 12 // 13 // The file cmplxdivide1.go is checked in to the repository, but 14 // if it needs to be regenerated, compile and run this C program 15 // like this: 16 // gcc '-std=c99' cmplxdivide.c && a.out >cmplxdivide1.go 17 18 #include <complex.h> 19 #include <math.h> 20 #include <stdio.h> 21 #include <string.h> 22 23 #define nelem(x) (sizeof(x)/sizeof((x)[0])) 24 25 double f[] = { 26 0.0, 27 -0.0, 28 1.0, 29 -1.0, 30 2.0, 31 NAN, 32 INFINITY, 33 -INFINITY, 34 }; 35 36 char* fmt(double g) { 37 static char buf[10][30]; 38 static int n; 39 char *p; 40 41 p = buf[n++]; 42 if(n == 10) { 43 n = 0; 44 } 45 46 sprintf(p, "%g", g); 47 48 if(strcmp(p, "0") == 0) { 49 strcpy(p, "zero"); 50 return p; 51 } 52 53 if(strcmp(p, "-0") == 0) { 54 strcpy(p, "-zero"); 55 return p; 56 } 57 58 return p; 59 } 60 61 int main(void) { 62 int i, j, k, l; 63 double complex n, d, q; 64 65 printf("// skip\n"); 66 printf("// # generated by cmplxdivide.c\n"); 67 printf("\n"); 68 printf("package main\n"); 69 printf("\n"); 70 printf("import \"math\"\n"); 71 printf("\n"); 72 printf("var (\n"); 73 printf("\tnan = math.NaN()\n"); 74 printf("\tinf = math.Inf(1)\n"); 75 printf("\tzero = 0.0\n"); 76 printf(")\n"); 77 printf("\n"); 78 printf("var tests = []struct {\n"); 79 printf("\tf, g complex128\n"); 80 printf("\tout complex128\n"); 81 printf("}{\n"); 82 83 for(i=0; i<nelem(f); i++) 84 for(j=0; j<nelem(f); j++) 85 for(k=0; k<nelem(f); k++) 86 for(l=0; l<nelem(f); l++) { 87 n = f[i] + f[j]*I; 88 d = f[k] + f[l]*I; 89 q = n/d; 90 91 printf("\t{complex(%s, %s), complex(%s, %s), complex(%s, %s)},\n", 92 fmt(creal(n)), fmt(cimag(n)), 93 fmt(creal(d)), fmt(cimag(d)), 94 fmt(creal(q)), fmt(cimag(q))); 95 } 96 printf("}\n"); 97 return 0; 98 }