modernc.org/knuth@v0.0.4/web/testdata/ctan.org/tex-archive/systems/knuth/dist/texware/tftopl.web (about)

     1  % This program by D. E. Knuth is not copyrighted and can be used freely.
     2  % Version 0 was implemented in January 1982.
     3  % In February 1982 a new restriction on ligature steps was added.
     4  % In June 1982 the routines were divided into smaller pieces for IBM people,
     5  % and the result was designated "Version 1" in September 1982.
     6  % Slight changes were made in October, 1982, for version 0.6 of TeX.
     7  % Version 2 (July 1983) was released with TeX version 0.999.
     8  % Version 2.1 (September 1983) changed TEXINFO to FONTDIMEN.
     9  % Version 2.2 (February 1984) simplified decimal fraction output.
    10  % Version 2.3 (May 1984) fixed a bug when lh=17.
    11  % Version 2.4 (July 1984) fixed a bug involving unused ligature code.
    12  % Version 2.5 (September 1985) updated the standard codingscheme names.
    13  % Version 3 (October 1989) introduced new ligature capabilities.
    14  % Version 3.1 (November 1989) renamed z[] to lig_z[] for better portability.
    15  % Version 3.2 (February 2008) added a newline after a warning message.
    16  % Version 3.3 (January 2014) added a space to an error message (Breitenlohner),
    17  %  and tests nl>lig_size not 4*lig_size (C. M. Connelly, Melissa O'Neill).
    18  
    19  % Here is TeX material that gets inserted after \input webmac
    20  \def\hang{\hangindent 3em\indent\ignorespaces}
    21  \font\ninerm=cmr9
    22  \let\mc=\ninerm % medium caps for names like SAIL
    23  \def\PASCAL{Pascal}
    24  
    25  \def\(#1){} % this is used to make section names sort themselves better
    26  \def\9#1{} % this is used for sort keys in the index
    27  
    28  \def\title{TF\lowercase{to}PL}
    29  \def\contentspagenumber{201}
    30  \def\topofcontents{\null
    31    \titlefalse % include headline on the contents page
    32    \def\rheader{\mainfont\hfil \contentspagenumber}
    33    \vfill
    34    \centerline{\titlefont The {\ttitlefont TFtoPL} processor}
    35    \vskip 15pt
    36    \centerline{(Version 3.3, January 2014)}
    37    \vfill}
    38  \def\botofcontents{\vfill
    39    \centerline{\hsize 5in\baselineskip9pt
    40      \vbox{\ninerm\noindent
    41      The preparation of this report
    42      was supported in part by the National Science
    43      Foundation under grants IST-8201926 and MCS-8300984,
    44      and by the System Development Foundation. `\TeX' is a
    45      trademark of the American Mathematical Society.}}}
    46  \pageno=\contentspagenumber \advance\pageno by 1
    47  
    48  @* Introduction.
    49  The \.{TFtoPL} utility program converts \TeX\ font metric (``\.{TFM}'')
    50  files into equivalent property-list (``\.{PL}'') files. It also
    51  makes a thorough check of the given \.{TFM} file, using essentially the
    52  same algorithm as \TeX. Thus if \TeX\ complains that a \.{TFM}
    53  file is ``bad,'' this program will pinpoint the source or sources of
    54  badness. A \.{PL} file output by this program can be edited with
    55  a normal text editor, and the result can be converted back to \.{TFM}
    56  format using the companion program \.{PLtoTF}.
    57  
    58  The first \.{TFtoPL} program was designed by Leo Guibas in the summer of
    59  1978. Contributions by Frank Liang, Doug Wyatt, and Lyle Ramshaw
    60  also had a significant effect on the evolution of the present code.
    61  
    62  Extensions for an enhanced ligature mechanism were added by the author in 1989.
    63  
    64  The |banner| string defined here should be changed whenever \.{TFtoPL}
    65  gets modified.
    66  
    67  @d banner=='This is TFtoPL, Version 3.3' {printed when the program starts}
    68  
    69  @ This program is written entirely in standard \PASCAL, except that
    70  it occasionally has lower case letters in strings that are output.
    71  Such letters can be converted to upper case if necessary. The input is read
    72  from |tfm_file|, and the output is written on |pl_file|; error messages and
    73  other remarks are written on the |output| file, which the user may
    74  choose to assign to the terminal if the system permits it.
    75  @^system dependencies@>
    76  
    77  The term |print| is used instead of |write| when this program writes on
    78  the |output| file, so that all such output can be easily deflected.
    79  
    80  @d print(#)==write(#)
    81  @d print_ln(#)==write_ln(#)
    82  
    83  @p program TFtoPL(@!tfm_file,@!pl_file,@!output);
    84  label @<Labels in the outer block@>@/
    85  const @<Constants in the outer block@>@/
    86  type @<Types in the outer block@>@/
    87  var @<Globals in the outer block@>@/
    88  procedure initialize; {this procedure gets things started properly}
    89    begin print_ln(banner);@/
    90    @<Set initial values@>@/
    91    end;
    92  
    93  @ If the program has to stop prematurely, it goes to the
    94  `|final_end|'.
    95  
    96  @d final_end=9999 {label for the end of it all}
    97  
    98  @<Labels...@>=final_end;
    99  
   100  @ The following parameters can be changed at compile time to extend or
   101  reduce \.{TFtoPL}'s capacity.
   102  
   103  @<Constants...@>=
   104  @!tfm_size=30000; {maximum length of |tfm| data, in bytes}
   105  @!lig_size=5000; {maximum length of |lig_kern| program, in words}
   106  @!hash_size=5003; {preferably a prime number, a bit larger than the number
   107    of character pairs in lig/kern steps}
   108  
   109  @ Here are some macros for common programming idioms.
   110  
   111  @d incr(#) == #:=#+1 {increase a variable by unity}
   112  @d decr(#) == #:=#-1 {decrease a variable by unity}
   113  @d do_nothing == {empty statement}
   114  
   115  @* Font metric data.
   116  The idea behind \.{TFM} files is that typesetting routines like \TeX\
   117  need a compact way to store the relevant information about several
   118  dozen fonts, and computer centers need a compact way to store the
   119  relevant information about several hundred fonts. \.{TFM} files are
   120  compact, and most of the information they contain is highly relevant,
   121  so they provide a solution to the problem.
   122  
   123  The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
   124  Since the number of bytes is always a multiple of 4, we could
   125  also regard the file as a sequence of 32-bit words; but \TeX\ uses the
   126  byte interpretation, and so does \.{TFtoPL}. Note that the bytes
   127  are considered to be unsigned numbers.
   128  
   129  @<Glob...@>=
   130  @!tfm_file:packed file of 0..255;
   131  
   132  @ On some systems you may have to do something special to read a
   133  packed file of bytes. For example, the following code didn't work
   134  when it was first tried at Stanford, because packed files have to be
   135  opened with a special switch setting on the \PASCAL\ that was used.
   136  @^system dependencies@>
   137  
   138  @<Set init...@>=
   139  reset(tfm_file);
   140  
   141  @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
   142  integers that give the lengths of the various subsequent portions
   143  of the file. These twelve integers are, in order:
   144  $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
   145  |@!lf|&length of the entire file, in words;\cr
   146  |@!lh|&length of the header data, in words;\cr
   147  |@!bc|&smallest character code in the font;\cr
   148  |@!ec|&largest character code in the font;\cr
   149  |@!nw|&number of words in the width table;\cr
   150  |@!nh|&number of words in the height table;\cr
   151  |@!nd|&number of words in the depth table;\cr
   152  |@!ni|&number of words in the italic correction table;\cr
   153  |@!nl|&number of words in the lig/kern table;\cr
   154  |@!nk|&number of words in the kern table;\cr
   155  |@!ne|&number of words in the extensible character table;\cr
   156  |@!np|&number of font parameter words.\cr}}$$
   157  They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
   158  |ne<=256|, and
   159  $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
   160  Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
   161  and as few as 0 characters (if |bc=ec+1|).
   162  
   163  Incidentally, when two or more 8-bit bytes are combined to form an integer of
   164  16 or more bits, the most significant bytes appear first in the file.
   165  This is called BigEndian order.
   166  
   167  @<Glob...@>=
   168  @!lf,@!lh,@!bc,@!ec,@!nw,@!nh,@!nd,@!ni,@!nl,@!nk,@!ne,@!np:0..@'77777;
   169    {subfile sizes}
   170  
   171  @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
   172  arrays having the informal specification
   173  $$\def\arr$[#1]#2${\&{array} $[#1]$ \&{of} #2}
   174  \vbox{\halign{\hfil\\{#}&$\,:\,$\arr#\hfil\cr
   175  header&|[0..lh-1]stuff|\cr
   176  char\_info&|[bc..ec]char_info_word|\cr
   177  width&|[0..nw-1]fix_word|\cr
   178  height&|[0..nh-1]fix_word|\cr
   179  depth&|[0..nd-1]fix_word|\cr
   180  italic&|[0..ni-1]fix_word|\cr
   181  lig\_kern&|[0..nl-1]lig_kern_command|\cr
   182  kern&|[0..nk-1]fix_word|\cr
   183  exten&|[0..ne-1]extensible_recipe|\cr
   184  param&|[1..np]fix_word|\cr}}$$
   185  The most important data type used here is a |@!fix_word|, which is
   186  a 32-bit representation of a binary fraction. A |fix_word| is a signed
   187  quantity, with the two's complement of the entire word used to represent
   188  negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
   189  binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
   190  the smallest is $-2048$. We will see below, however, that all but one of
   191  the |fix_word| values will lie between $-16$ and $+16$.
   192  
   193  @ The first data array is a block of header information, which contains
   194  general facts about the font. The header must contain at least two words,
   195  and for \.{TFM} files to be used with Xerox printing software it must
   196  contain at least 18 words, allocated as described below. When different
   197  kinds of devices need to be interfaced, it may be necessary to add further
   198  words to the header block.
   199  
   200  \yskip\hang|header[0]| is a 32-bit check sum that \TeX\ will copy into the
   201  \.{DVI} output file whenever it uses the font.  Later on when the \.{DVI}
   202  file is printed, possibly on another computer, the actual font that gets
   203  used is supposed to have a check sum that agrees with the one in the
   204  \.{TFM} file used by \TeX. In this way, users will be warned about
   205  potential incompatibilities. (However, if the check sum is zero in either
   206  the font file or the \.{TFM} file, no check is made.)  The actual relation
   207  between this check sum and the rest of the \.{TFM} file is not important;
   208  the check sum is simply an identification number with the property that
   209  incompatible fonts almost always have distinct check sums.
   210  @^check sum@>
   211  
   212  \yskip\hang|header[1]| is a |fix_word| containing the design size of the
   213  font, in units of \TeX\ points (7227 \TeX\ points = 254 cm).  This number
   214  must be at least 1.0; it is fairly arbitrary, but usually the design size
   215  is 10.0 for a ``10 point'' font, i.e., a font that was designed to look
   216  best at a 10-point size, whatever that really means. When a \TeX\ user
   217  asks for a font `\.{at} $\delta$ \.{pt}', the effect is to override the
   218  design size and replace it by $\delta$, and to multiply the $x$ and~$y$
   219  coordinates of the points in the font image by a factor of $\delta$
   220  divided by the design size.  {\sl All other dimensions in the\/\ \.{TFM}
   221  file are |fix_word|\kern-1pt\ numbers in design-size units.} Thus, for example,
   222  the value of |param[6]|, one \.{em} or \.{\\quad}, is often the |fix_word|
   223  value $2^{20}=1.0$, since many fonts have a design size equal to one em.
   224  The other dimensions must be less than 16 design-size units in absolute
   225  value; thus, |header[1]| and |param[1]| are the only |fix_word| entries in
   226  the whole \.{TFM} file whose first byte might be something besides 0 or
   227  255.  @^design size@>
   228  
   229  \yskip\hang|header[2..11]|, if present, contains 40 bytes that identify
   230  the character coding scheme. The first byte, which must be between 0 and
   231  39, is the number of subsequent ASCII bytes actually relevant in this
   232  string, which is intended to specify what character-code-to-symbol
   233  convention is present in the font.  Examples are \.{ASCII} for standard
   234  ASCII, \.{TeX text} for fonts like \.{cmr10} and \.{cmti9}, \.{TeX math
   235  extension} for \.{cmex10}, \.{XEROX text} for Xerox fonts, \.{GRAPHIC} for
   236  special-purpose non-alphabetic fonts, \.{UNSPECIFIED} for the default case
   237  when there is no information.  Parentheses should not appear in this name.
   238  (Such a string is said to be in {\mc BCPL} format.)
   239  @^coding scheme@>
   240  
   241  \yskip\hang|header[12..16]|, if present, contains 20 bytes that name the
   242  font family (e.g., \.{CMR} or \.{HELVETICA}), in {\mc BCPL} format.
   243  This field is also known as the ``font identifier.''
   244  @^family name@>
   245  @^font identifier@>
   246  
   247  \yskip\hang|header[17]|, if present, contains a first byte called the
   248  |seven_bit_safe_flag|, then two bytes that are ignored, and a fourth byte
   249  called the |face|. If the value of the fourth byte is less than 18, it has
   250  the following interpretation as a ``weight, slope, and expansion'':  Add 0
   251  or 2 or 4 (for medium or bold or light) to 0 or 1 (for roman or italic) to
   252  0 or 6 or 12 (for regular or condensed or extended).  For example, 13 is
   253  0+1+12, so it represents medium italic extended.  A three-letter code
   254  (e.g., \.{MIE}) can be used for such |face| data.
   255  
   256  \yskip\hang|header[18..@twhatever@>]| might also be present; the individual
   257  words are simply called |header[18]|, |header[19]|, etc., at the moment.
   258  
   259  @ Next comes the |char_info| array, which contains one |char_info_word|
   260  per character. Each |char_info_word| contains six fields packed into
   261  four bytes as follows.
   262  
   263  \yskip\hang first byte: |width_index| (8 bits)\par
   264  \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
   265    (4~bits)\par
   266  \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
   267    (2~bits)\par
   268  \hang fourth byte: |remainder| (8 bits)\par
   269  \yskip\noindent
   270  The actual width of a character is |width[width_index]|, in design-size
   271  units; this is a device for compressing information, since many characters
   272  have the same width. Since it is quite common for many characters
   273  to have the same height, depth, or italic correction, the \.{TFM} format
   274  imposes a limit of 16 different heights, 16 different depths, and
   275  64 different italic corrections.
   276  
   277  Incidentally, the relation |width[0]=height[0]=depth[0]=italic[0]=0|
   278  should always hold, so that an index of zero implies a value of zero.
   279  The |width_index| should never be zero unless the character does
   280  not exist in the font, since a character is valid if and only if it lies
   281  between |bc| and |ec| and has a nonzero |width_index|.
   282  
   283  @ The |tag| field in a |char_info_word| has four values that explain how to
   284  interpret the |remainder| field.
   285  
   286  \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
   287  \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
   288  program starting at |lig_kern[remainder]|.\par
   289  \hang|tag=2| (|list_tag|) means that this character is part of a chain of
   290  characters of ascending sizes, and not the largest in the chain.  The
   291  |remainder| field gives the character code of the next larger character.\par
   292  \hang|tag=3| (|ext_tag|) means that this character code represents an
   293  extensible character, i.e., a character that is built up of smaller pieces
   294  so that it can be made arbitrarily large. The pieces are specified in
   295  |exten[remainder]|.\par
   296  
   297  @d no_tag=0 {vanilla character}
   298  @d lig_tag=1 {character has a ligature/kerning program}
   299  @d list_tag=2 {character has a successor in a charlist}
   300  @d ext_tag=3 {character is extensible}
   301  
   302  @ The |lig_kern| array contains instructions in a simple programming language
   303  that explains what to do for special letter pairs. Each word is a
   304  |lig_kern_command| of four bytes.
   305  
   306  \yskip\hang first byte: |skip_byte|, indicates that this is the final program
   307    step if the byte is 128 or more, otherwise the next step is obtained by
   308    skipping this number of intervening steps.\par
   309  \hang second byte: |next_char|, ``if |next_char| follows the current character,
   310    then perform the operation and stop, otherwise continue.''\par
   311  \hang third byte: |op_byte|, indicates a ligature step if less than~128,
   312    a kern step otherwise.\par
   313  \hang fourth byte: |remainder|.\par
   314  \yskip\noindent
   315  In a kern step, an
   316  additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
   317  between the current character and |next_char|. This amount is
   318  often negative, so that the characters are brought closer together
   319  by kerning; but it might be positive.
   320  
   321  There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
   322  $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
   323  |remainder| is inserted between the current character and |next_char|;
   324  then the current character is deleted if $b=0$, and |next_char| is
   325  deleted if $c=0$; then we pass over $a$~characters to reach the next
   326  current character (which may have a ligature/kerning program of its own).
   327  
   328  Notice that if $a=0$ and $b=1$, the current character is unchanged; if
   329  $a=b$ and $c=1$, the current character is changed but the next character is
   330  unchanged. \.{TFtoPL} will check to see that infinite loops are avoided.
   331  
   332  If the very first instruction of the |lig_kern| array has |skip_byte=255|,
   333  the |next_char| byte is the so-called right boundary character of this font;
   334  the value of |next_char| need not lie between |bc| and~|ec|.
   335  If the very last instruction of the |lig_kern| array has |skip_byte=255|,
   336  there is a special ligature/kerning program for a left boundary character,
   337  beginning at location |256*op_byte+remainder|.
   338  The interpretation is that \TeX\ puts implicit boundary characters
   339  before and after each consecutive string of characters from the same font.
   340  These implicit characters do not appear in the output, but they can affect
   341  ligatures and kerning.
   342  
   343  If the very first instruction of a character's |lig_kern| program has
   344  |skip_byte>128|, the program actually begins in location
   345  |256*op_byte+remainder|. This feature allows access to large |lig_kern|
   346  arrays, because the first instruction must otherwise
   347  appear in a location |<=255|.
   348  
   349  Any instruction with |skip_byte>128| in the |lig_kern| array must have
   350  |256*op_byte+remainder<nl|. If such an instruction is encountered during
   351  normal program execution, it denotes an unconditional halt; no ligature
   352  command is performed.
   353  
   354  @d stop_flag=128 {value indicating `\.{STOP}' in a lig/kern program}
   355  @d kern_flag=128 {op code for a kern step}
   356  
   357  @ Extensible characters are specified by an |extensible_recipe|,
   358  which consists of four bytes called |top|, |mid|,
   359  |bot|, and |rep| (in this order). These bytes are the character codes
   360  of individual pieces used to build up a large symbol.
   361  If |top|, |mid|, or |bot| are zero,
   362  they are not present in the built-up result. For example, an extensible
   363  vertical line is like an extensible bracket, except that the top and
   364  bottom pieces are missing.
   365  
   366  
   367  @ The final portion of a \.{TFM} file is the |param| array, which is another
   368  sequence of |fix_word| values.
   369  
   370  \yskip\hang|param[1]=@!slant| is the amount of italic slant, which is used
   371  to help position accents. For example, |slant=.25| means that when you go
   372  up one unit, you also go .25 units to the right. The |slant| is a pure
   373  number; it's the only |fix_word| other than the design size itself that is
   374  not scaled by the design size.
   375  
   376  \hang|param[2]=space| is the normal spacing between words in text.
   377  Note that character |" "| in the font need not have anything to do with
   378  blank spaces.
   379  
   380  \hang|param[3]=space_stretch| is the amount of glue stretching between words.
   381  
   382  \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
   383  
   384  \hang|param[5]=x_height| is the height of letters for which accents don't
   385  have to be raised or lowered.
   386  
   387  \hang|param[6]=quad| is the size of one em in the font.
   388  
   389  \hang|param[7]=extra_space| is the amount added to |param[2]| at the
   390  ends of sentences.
   391  
   392  When the character coding scheme is \.{TeX math symbols}, the font is
   393  supposed to have 15 additional parameters called |num1|, |num2|, |num3|,
   394  |denom1|, |denom2|, |sup1|, |sup2|, |sup3|, |sub1|, |sub2|, |supdrop|,
   395  |subdrop|, |delim1|, |delim2|, and |axis_height|, respectively. When the
   396  character coding scheme is \.{TeX math extension}, the font is supposed to
   397  have six additional parameters called |default_rule_thickness| and
   398  |big_op_spacing1| through |big_op_spacing5|.
   399  
   400  @ So that is what \.{TFM} files hold. The next question is, ``What about
   401  \.{PL} files?'' A complete answer to that question appears in the
   402  documentation of the companion program, \.{PLtoTF}, so it will not
   403  be repeated here. Suffice it to say that a \.{PL} file is an ordinary
   404  \PASCAL\ text file, and that the output of \.{TFtoPL} uses only a
   405  subset of the possible constructions that might appear in a \.{PL} file.
   406  Furthermore, hardly anybody really wants to look at the formal
   407  definition of \.{PL} format, because it is almost self-explanatory when
   408  you see an example or two.
   409  
   410  @<Glob...@>=
   411  @!pl_file:text;
   412  
   413  @ @<Set init...@>=
   414  rewrite(pl_file);
   415  
   416  @* Unpacked representation.
   417  The first thing \.{TFtoPL} does is read the entire |tfm_file| into an array of
   418  bytes, |tfm[0..(4*lf-1)]|.
   419  
   420  @<Types...@>=
   421  @!byte=0..255; {unsigned eight-bit quantity}
   422  @!index=0..tfm_size; {address of a byte in |tfm|}
   423  
   424  @ @<Glob...@>=
   425  @!tfm:array [-1000..tfm_size] of byte; {the input data all goes here}
   426   {the negative addresses avoid range checks for invalid characters}
   427  
   428  @ The input may, of course, be all screwed up and not a \.{TFM} file
   429  at all. So we begin cautiously.
   430  
   431  @d abort(#)==begin print_ln(#);
   432    print_ln('Sorry, but I can''t go on; are you sure this is a TFM?');
   433    goto final_end;
   434    end
   435  
   436  @<Read the whole input file@>=
   437  read(tfm_file,tfm[0]);
   438  if tfm[0]>127 then abort('The first byte of the input file exceeds 127!');
   439  @.The first byte...@>
   440  if eof(tfm_file) then abort('The input file is only one byte long!');
   441  @.The input...one byte long@>
   442  read(tfm_file,tfm[1]); lf:=tfm[0]*@'400+tfm[1];
   443  if lf=0 then
   444    abort('The file claims to have length zero, but that''s impossible!');
   445  @.The file claims...@>
   446  if 4*lf-1>tfm_size then abort('The file is bigger than I can handle!');
   447  @.The file is bigger...@>
   448  for tfm_ptr:=2 to 4*lf-1 do
   449    begin if eof(tfm_file) then
   450      abort('The file has fewer bytes than it claims!');
   451  @.The file has fewer bytes...@>
   452    read(tfm_file,tfm[tfm_ptr]);
   453    end;
   454  if not eof(tfm_file) then
   455    begin print_ln('There''s some extra junk at the end of the TFM file,');
   456  @.There's some extra junk...@>
   457    print_ln('but I''ll proceed as if it weren''t there.');
   458    end
   459  
   460  @ After the file has been read successfully, we look at the subfile sizes
   461  to see if they check out.
   462  
   463  @d eval_two_bytes(#)==begin if tfm[tfm_ptr]>127 then
   464      abort('One of the subfile sizes is negative!');
   465  @.One of the subfile sizes...@>
   466    #:=tfm[tfm_ptr]*@'400+tfm[tfm_ptr+1];
   467    tfm_ptr:=tfm_ptr+2;
   468    end
   469  
   470  @<Set subfile sizes |lh|, |bc|, \dots, |np|@>=
   471  begin tfm_ptr:=2;@/
   472  eval_two_bytes(lh);
   473  eval_two_bytes(bc);
   474  eval_two_bytes(ec);
   475  eval_two_bytes(nw);
   476  eval_two_bytes(nh);
   477  eval_two_bytes(nd);
   478  eval_two_bytes(ni);
   479  eval_two_bytes(nl);
   480  eval_two_bytes(nk);
   481  eval_two_bytes(ne);
   482  eval_two_bytes(np);
   483  if lh<2 then abort('The header length is only ',lh:1,'!');
   484  @.The header length...@>
   485  if nl>lig_size then
   486    abort('The lig/kern program is longer than I can handle!');
   487  @.The lig/kern program...@>
   488  if (bc>ec+1)or(ec>255) then abort('The character code range ',
   489  @.The character code range...@>
   490    bc:1,'..',ec:1,' is illegal!');
   491  if (nw=0)or(nh=0)or(nd=0)or(ni=0) then
   492    abort('Incomplete subfiles for character dimensions!');
   493  @.Incomplete subfiles...@>
   494  if ne>256 then abort('There are ',ne:1,' extensible recipes!');
   495  @.There are ... recipes@>
   496  if lf<>6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np then
   497    abort('Subfile sizes don''t add up to the stated total!');
   498  @.Subfile sizes don't add up...@>
   499  end
   500  
   501  @ Once the input data successfully passes these basic checks,
   502  \.{TFtoPL} believes that it is a \.{TFM} file, and the conversion
   503  to \.{PL} format will take place. Access to the various subfiles
   504  is facilitated by computing the following base addresses. For example,
   505  the |char_info| for character |c| will start in location
   506  |4*(char_base+c)| of the |tfm| array.
   507  
   508  @<Globals...@>=
   509  @!char_base,@!width_base,@!height_base,@!depth_base,@!italic_base,
   510  @!lig_kern_base,@!kern_base,@!exten_base,@!param_base:integer;
   511    {base addresses for the subfiles}
   512  
   513  @ @<Compute the base addresses@>=
   514  begin char_base:=6+lh-bc;
   515  width_base:=char_base+ec+1;
   516  height_base:=width_base+nw;
   517  depth_base:=height_base+nh;
   518  italic_base:=depth_base+nd;
   519  lig_kern_base:=italic_base+ni;
   520  kern_base:=lig_kern_base+nl;
   521  exten_base:=kern_base+nk;
   522  param_base:=exten_base+ne-1;
   523  end
   524  
   525  @ Of course we want to define macros that suppress the detail of how the
   526  font information is actually encoded. Each word will be referred to by
   527  the |tfm| index of its first byte. For example, if |c| is a character
   528  code between |bc| and |ec|, then |tfm[char_info(c)]| will be the
   529  first byte of its |char_info|, i.e., the |width_index|; furthermore
   530  |width(c)| will point to the |fix_word| for |c|'s width.
   531  
   532  @d check_sum=24
   533  @d design_size=check_sum+4
   534  @d scheme=design_size+4
   535  @d family=scheme+40
   536  @d random_word=family+20
   537  @d char_info(#)==4*(char_base+#)
   538  @d width_index(#)==tfm[char_info(#)]
   539  @d nonexistent(#)==((#<bc)or(#>ec)or(width_index(#)=0))
   540  @d height_index(#)==(tfm[char_info(#)+1] div 16)
   541  @d depth_index(#)==(tfm[char_info(#)+1] mod 16)
   542  @d italic_index(#)==(tfm[char_info(#)+2] div 4)
   543  @d tag(#)==(tfm[char_info(#)+2] mod 4)
   544  @d reset_tag(#)==tfm[char_info(#)+2]:=4*italic_index(#)+no_tag
   545  @d remainder(#)==tfm[char_info(#)+3]
   546  @d width(#)==4*(width_base+width_index(#))
   547  @d height(#)==4*(height_base+height_index(#))
   548  @d depth(#)==4*(depth_base+depth_index(#))
   549  @d italic(#)==4*(italic_base+italic_index(#))
   550  @d exten(#)==4*(exten_base+remainder(#))
   551  @d lig_step(#)==4*(lig_kern_base+(#))
   552  @d kern(#)==4*(kern_base+#) {here \#\ is an index, not a character}
   553  @d param(#)==4*(param_base+#) {likewise}
   554  
   555  @ One of the things we would like to do is take cognizance of fonts whose
   556  character coding scheme is \.{TeX math symbols} or \.{TeX math extension};
   557  we will set the |font_type| variable to one of the three choices
   558  |vanilla|, |mathsy|, or |mathex|.
   559  
   560  @d vanilla=0 {not a special scheme}
   561  @d mathsy=1 {\.{TeX math symbols} scheme}
   562  @d mathex=2 {\.{TeX math extension} scheme}
   563  
   564  @<Glob...@>=
   565  @!font_type:vanilla..mathex; {is this font special?}
   566  
   567  @* Basic output subroutines.
   568  Let us now define some procedures that will reduce the rest of \.{TFtoPL}'s
   569  work to a triviality.
   570  
   571  First of all, it is convenient to have an abbreviation for output to the
   572  \.{PL} file:
   573  
   574  @d out(#)==write(pl_file,#)
   575  
   576  @ In order to stick to standard \PASCAL, we use three strings called
   577  |ASCII_04|, |ASCII_10|, and |ASCII_14|, in terms of which we can do the
   578  appropriate conversion of ASCII codes. Three other little strings are
   579  used to produce |face| codes like \.{MIE}.
   580  
   581  @<Glob...@>=
   582  @!ASCII_04,@!ASCII_10,@!ASCII_14: packed array [1..32] of char;
   583    {strings for output in the user's external character set}
   584  @!MBL_string,@!RI_string,@!RCE_string:packed array [1..3] of char;
   585    {handy string constants for |face| codes}
   586  
   587  @ @<Set init...@>=
   588  ASCII_04:=' !"#$%&''()*+,-./0123456789:;<=>?';@/
   589  ASCII_10:='@@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_';@/
   590  ASCII_14:='`abcdefghijklmnopqrstuvwxyz{|}~ ';@/
   591  MBL_string:='MBL'; RI_string:='RI '; RCE_string:='RCE';
   592  
   593  @ The array |dig| will hold a sequence of digits to be output.
   594  
   595  @<Glob...@>=
   596  @!dig:array[0..11] of 0..9;
   597  
   598  @ Here, in fact, are two procedures that output |dig[j-1]|$\,\ldots\,$|dig[0]|,
   599  given $j>0$.
   600  
   601  @p procedure out_digs(j:integer); {outputs |j| digits}
   602  begin repeat decr(j); out(dig[j]:1);
   603  until j=0;
   604  end;
   605  @#
   606  procedure print_digs(j:integer); {prints |j| digits}
   607  begin repeat decr(j); print(dig[j]:1);
   608  until j=0;
   609  end;
   610  
   611  @ The |print_octal| procedure indicates how |print_digs| can be used.
   612  Since this procedure is used only to print character codes, it always
   613  produces three digits.
   614  
   615  @p procedure print_octal(c:byte); {prints octal value of |c|}
   616  var j:0..2; {index into |dig|}
   617  begin print(''''); {an apostrophe indicates the octal notation}
   618  for j:=0 to 2 do
   619    begin dig[j]:=c mod 8; c:=c div 8;
   620    end;
   621  print_digs(3);
   622  end;
   623  
   624  @ A \.{PL} file has nested parentheses, and we want to format the output
   625  so that its structure is clear. The |level| variable keeps track of the
   626  depth of nesting.
   627  
   628  @<Glob...@>=
   629  @!level:0..5;
   630  
   631  @ @<Set init...@>=
   632  level:=0;
   633  
   634  @ Three simple procedures suffice to produce the desired structure in the
   635  output.
   636  
   637  @p procedure out_ln; {finishes one line, indents the next}
   638  var l:0..5;
   639  begin write_ln(pl_file);
   640  for l:=1 to level do out('   ');
   641  end;
   642  @#
   643  procedure left; {outputs a left parenthesis}
   644  begin incr(level); out('(');
   645  end;
   646  @#
   647  procedure right; {outputs a right parenthesis and finishes a line}
   648  begin decr(level); out(')'); out_ln;
   649  end;
   650  
   651  @ The value associated with a property can be output in a variety of
   652  ways. For example, we might want to output a {\mc BCPL} string that
   653  begins in |tfm[k]|:
   654  
   655  @p procedure out_BCPL(@!k:index); {outputs a string, preceded by a blank space}
   656  var l:0..39; {the number of bytes remaining}
   657  begin out(' '); l:=tfm[k];
   658  while l>0 do
   659    begin incr(k); decr(l);
   660    case tfm[k] div @'40 of
   661    1: out(ASCII_04[1+(tfm[k] mod @'40)]);
   662    2: out(ASCII_10[1+(tfm[k] mod @'40)]);
   663    3: out(ASCII_14[1+(tfm[k] mod @'40)]);
   664    end;
   665    end;
   666  end;
   667  
   668  @ The property value might also be a sequence of |l| bytes, beginning
   669  in |tfm[k]|, that we would like to output in octal notation.
   670  The following procedure assumes that |l<=4|, but larger values of |l|
   671  could be handled easily by enlarging the |dig| array and increasing
   672  the upper bounds on |b| and |j|.
   673  
   674  @p procedure out_octal(@!k,@!l:index); {outputs |l| bytes in octal}
   675  var a:0..@'1777; {accumulator for bits not yet output}
   676  @!b:0..32; {the number of significant bits in |a|}
   677  @!j:0..11; {the number of digits of output}
   678  begin out(' O '); {specify octal format}
   679  a:=0; b:=0; j:=0;
   680  while l>0 do @<Reduce \(1)|l| by one, preserving the invariants@>;
   681  while (a>0)or(j=0) do
   682    begin dig[j]:=a mod 8; a:=a div 8; incr(j);
   683    end;
   684  out_digs(j);
   685  end;
   686  
   687  @ @<Reduce \(1)|l|...@>=
   688  begin decr(l);
   689  if tfm[k+l]<>0 then
   690    begin while b>2 do
   691      begin dig[j]:=a mod 8; a:=a div 8; b:=b-3; incr(j);
   692      end;
   693    case b of
   694    0: a:=tfm[k+l];
   695    1:a:=a+2*tfm[k+l];
   696    2:a:=a+4*tfm[k+l];
   697    end;
   698    end;
   699  b:=b+8;
   700  end
   701  
   702  @ The property value may be a character, which is output in octal
   703  unless it is a letter or a digit. This procedure is the only place
   704  where a lowercase letter will be output to the \.{PL} file.
   705  @^system dependencies@>
   706  
   707  @p procedure out_char(@!c:byte); {outputs a character}
   708  begin if font_type>vanilla then
   709    begin tfm[0]:=c; out_octal(0,1)
   710    end
   711  else if (c>="0")and(c<="9") then
   712    out(' C ',c-"0":1)
   713  else if (c>="A")and(c<="Z") then
   714    out(' C ',ASCII_10[c-"A"+2])
   715  else if (c>="a")and(c<="z") then
   716    out(' C ',ASCII_14[c-"a"+2])
   717  else  begin tfm[0]:=c; out_octal(0,1);
   718    end;
   719  end;
   720  
   721  @ The property value might be a ``face'' byte, which is output in the
   722  curious code mentioned earlier, provided that it is less than 18.
   723  
   724  @p procedure out_face(@!k:index); {outputs a |face|}
   725  var s:0..1; {the slope}
   726  @!b:0..8; {the weight and expansion}
   727  begin if tfm[k]>=18 then out_octal(k,1)
   728  else  begin out(' F ');  {specify face-code format}
   729    s:=tfm[k] mod 2; b:=tfm[k] div 2;
   730    out(MBL_string[1+(b mod 3)]);
   731    out(RI_string[1+s]);
   732    out(RCE_string[1+(b div 3)]);
   733    end;
   734  end;
   735  
   736  @ And finally, the value might be a |fix_word|, which is output in
   737  decimal notation with just enough decimal places for \.{PLtoTF}
   738  to recover every bit of the given |fix_word|.
   739  
   740  All of the numbers involved in the intermediate calculations of
   741  this procedure will be nonnegative and less than $10\cdot2^{24}$.
   742  
   743  @p procedure out_fix(@!k:index); {outputs a |fix_word|}
   744  var a:0..@'7777; {accumulator for the integer part}
   745  @!f:integer; {accumulator for the fraction part}
   746  @!j:0..12; {index into |dig|}
   747  @!delta:integer; {amount if allowable inaccuracy}
   748  begin out(' R '); {specify real format}
   749  a:=(tfm[k]*16)+(tfm[k+1] div 16);
   750  f:=((tfm[k+1] mod 16)*@'400+tfm[k+2])*@'400+tfm[k+3];
   751  if a>@'3777 then @<Reduce \(2)negative to positive@>;
   752  @<Output the integer part, |a|, in decimal notation@>;
   753  @<Output the fraction part, $|f|/2^{20}$, in decimal notation@>;
   754  end;
   755  
   756  @ The following code outputs at least one digit even if |a=0|.
   757  
   758  @<Output the integer...@>=
   759  begin j:=0;
   760  repeat dig[j]:=a mod 10; a:=a div 10; incr(j);
   761  until a=0;
   762  out_digs(j);
   763  end
   764  
   765  @ And the following code outputs at least one digit to the right
   766  of the decimal point.
   767  
   768  @<Output the fraction...@>=
   769  begin out('.'); f:=10*f+5; delta:=10;
   770  repeat if delta>@'4000000 then f:=f+@'2000000-(delta div 2);
   771  out(f div @'4000000:1); f:=10*(f mod @'4000000); delta:=delta*10;
   772  until f<=delta;
   773  end;
   774  
   775  @ @<Reduce \(2)negative to positive@>=
   776  begin out('-'); a:=@'10000-a;
   777  if f>0 then
   778    begin f:=@'4000000-f; decr(a);
   779    end;
   780  end
   781  
   782  @* Doing it.
   783  \TeX\ checks the information of a \.{TFM} file for validity as the
   784  file is being read in, so that no further checks will be needed when
   785  typesetting is going on. And when it finds something wrong, it just
   786  calls the file ``bad,'' without identifying the nature of the problem,
   787  since \.{TFM} files are supposed to be good almost all of the time.
   788  
   789  Of course, a bad file shows up every now and again, and that's where
   790  \.{TFtoPL} comes in. This program wants to catch at least as many errors as
   791  \TeX\ does, and to give informative error messages besides.
   792  All of the errors are corrected, so that the \.{PL} output will
   793  be correct (unless, of course, the \.{TFM} file was so loused up
   794  that no attempt is being made to fathom it).
   795  
   796  @ Just before each character is processed, its code is printed in octal
   797  notation. Up to eight such codes appear on a line; so we have a variable
   798  to keep track of how many are currently there. We also keep track of
   799  whether or not any errors have had to be corrected.
   800  
   801  @<Glob...@>=
   802  @!chars_on_line:0..8; {the number of characters printed on the current line}
   803  @!perfect:boolean; {was the file free of errors?}
   804  
   805  @ @<Set init...@>=
   806  chars_on_line:=0;@/
   807  perfect:=true; {innocent until proved guilty}
   808  
   809  @ Error messages are given with the help of the |bad| and |range_error|
   810  and |bad_char| macros:
   811  
   812  @d bad(#)==begin perfect:=false; if chars_on_line>0 then print_ln(' ');
   813    chars_on_line:=0; print_ln('Bad TFM file: ',#);
   814    end
   815  @.Bad TFM file@>
   816  @d range_error(#)==begin perfect:=false; print_ln(' ');
   817    print(#,' index for character ');
   818    print_octal(c); print_ln(' is too large;');
   819    print_ln('so I reset it to zero.');
   820    end
   821  @d bad_char_tail(#)==print_octal(#); print_ln('.');
   822    end
   823  @d bad_char(#)==begin perfect:=false; if chars_on_line>0 then print_ln(' ');
   824    chars_on_line:=0; print('Bad TFM file: ',#,' nonexistent character ');
   825    bad_char_tail
   826  @d correct_bad_char_tail(#)==print_octal(tfm[#]); print_ln('.'); tfm[#]:=bc;
   827    end
   828  @d correct_bad_char(#)== begin perfect:=false;
   829    if chars_on_line>0 then print_ln(' ');
   830    chars_on_line:=0; print('Bad TFM file: ',#,' nonexistent character ');
   831    correct_bad_char_tail
   832  
   833  @<Glob...@>=
   834  @!i:0..@'77777; {an index to words of a subfile}
   835  @!c:0..256; {a random character}
   836  @!d:0..3; {byte number in a word}
   837  @!k:index; {a random index}
   838  @!r:0..65535; {a random two-byte value}
   839  @!count:0..127; {for when we need to enumerate a small set}
   840  
   841  @ There are a lot of simple things to do, and they have to be done one
   842  at a time, so we might as well get down to business.  The first things
   843  that \.{TFtoPL} will put into the \.{PL} file appear in the header part.
   844  
   845  @<Do the header@>=
   846  begin font_type:=vanilla;
   847  if lh>=12 then
   848    begin @<Set the true |font_type|@>;
   849    if lh>=17 then
   850      begin @<Output the family name@>;
   851      if lh>=18 then @<Output the rest of the header@>;
   852      end;
   853    @<Output the character coding scheme@>;
   854    end;
   855  @<Output the design size@>;
   856  @<Output the check sum@>;
   857  @<Output the |seven_bit_safe_flag|@>;
   858  end
   859  
   860  @ @<Output the check sum@>=
   861  left; out('CHECKSUM'); out_octal(check_sum,4);
   862  right
   863  
   864  @ Incorrect design sizes are changed to 10 points.
   865  
   866  @d bad_design(#)==begin bad('Design size ',#,'!');
   867  @.Design size wrong@>
   868    print_ln('I''ve set it to 10 points.');
   869    out(' D 10');
   870    end
   871  
   872  @ @<Output the design size@>=
   873  left; out('DESIGNSIZE');
   874  if tfm[design_size]>127 then bad_design('negative')
   875  else if (tfm[design_size]=0)and(tfm[design_size+1]<16) then
   876    bad_design('too small')
   877  else out_fix(design_size);
   878  right;
   879  out('(COMMENT DESIGNSIZE IS IN POINTS)'); out_ln;
   880  out('(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)'); out_ln
   881  @.DESIGNSIZE IS IN POINTS@>
   882  
   883  @ Since we have to check two different {\mc BCPL} strings for validity,
   884  we might as well write a subroutine to make the check.
   885  
   886  @p procedure check_BCPL(@!k,@!l:index); {checks a string of length |<l|}
   887  var j:index; {runs through the string}
   888  @!c:byte; {character being checked}
   889  begin if tfm[k]>=l then
   890    begin bad('String is too long; I''ve shortened it drastically.');
   891  @.String is too long...@>
   892    tfm[k]:=1;
   893    end;
   894  for j:=k+1 to k+tfm[k] do
   895    begin c:=tfm[j];
   896    if (c="(")or(c=")") then
   897      begin bad('Parenthesis in string has been changed to slash.');
   898  @.Parenthesis...changed to slash@>
   899      tfm[j]:="/";
   900      end
   901    else if (c<" ")or(c>"~") then
   902      begin bad('Nonstandard ASCII code has been blotted out.');
   903  @.Nonstandard ASCII code...@>
   904      tfm[j]:="?";
   905      end
   906    else if (c>="a")and(c<="z") then tfm[j]:=c+"A"-"a"; {upper-casify letters}
   907    end;
   908  end;
   909  
   910  @ The |font_type| starts out |vanilla|; possibly we need to reset it.
   911  
   912  @<Set the true |font_type|@>=
   913  begin check_BCPL(scheme,40);
   914  if (tfm[scheme]>=11)and@|(tfm[scheme+1]="T")and@|
   915    (tfm[scheme+2]="E")and@|(tfm[scheme+3]="X")and@|
   916    (tfm[scheme+4]=" ")and@|(tfm[scheme+5]="M")and@|
   917    (tfm[scheme+6]="A")and@|(tfm[scheme+7]="T")and@|
   918    (tfm[scheme+8]="H")and@|(tfm[scheme+9]=" ") then
   919    begin if (tfm[scheme+10]="S")and(tfm[scheme+11]="Y") then font_type:=mathsy
   920    else if (tfm[scheme+10]="E")and(tfm[scheme+11]="X") then font_type:=mathex;
   921    end;
   922  end
   923  
   924  @ @<Output the character coding scheme@>=
   925  left; out('CODINGSCHEME');
   926  out_BCPL(scheme);
   927  right
   928  
   929  @ @<Output the family name@>=
   930  left; out('FAMILY');
   931  check_BCPL(family,20);
   932  out_BCPL(family);
   933  right
   934  
   935  @ @<Output the rest of the header@>=
   936  begin left; out('FACE'); out_face(random_word+3); right;
   937  for i:=18 to lh-1 do
   938    begin left; out('HEADER D ',i:1);
   939    out_octal(check_sum+4*i,@,4); right;
   940    end;
   941  end
   942  
   943  @ This program does not check to see if the |seven_bit_safe_flag| has the
   944  correct setting, i.e., if it really reflects the seven-bit-safety of
   945  the \.{TFM} file; the stated value is merely put into the \.{PL} file.
   946  The \.{PLtoTF} program will store a correct value and give a warning
   947  message if a file falsely claims to be safe.
   948  
   949  @<Output the |seven_bit_safe_flag|@>=
   950  if (lh>17) and (tfm[random_word]>127) then
   951    begin left; out('SEVENBITSAFEFLAG TRUE'); right;
   952    end
   953  
   954  @ The next thing to take care of is the list of parameters.
   955  
   956  @<Do the parameters@>=
   957  if np>0 then
   958    begin left; out('FONTDIMEN'); out_ln;
   959    for i:=1 to np do @<Check and output the $i$th parameter@>;
   960    right;
   961    end;
   962  @<Check to see if |np| is complete for this font type@>;
   963  
   964  @ @<Check to see if |np|...@>=
   965  if (font_type=mathsy)and(np<>22) then
   966    print_ln('Unusual number of fontdimen parameters for a math symbols font (',
   967  @.Unusual number of fontdimen...@>
   968      np:1,' not 22).')
   969  else if (font_type=mathex)and(np<>13) then
   970    print_ln('Unusual number of fontdimen parameters for an extension font (',
   971      np:1,' not 13).')
   972  
   973  @ All |fix_word| values except the design size and the first parameter
   974  will be checked to make sure that they are less than 16.0 in magnitude,
   975  using the |check_fix| macro:
   976  
   977  @d check_fix_tail(#)==bad(#,' ',i:1,' is too big;');
   978    print_ln('I have set it to zero.');
   979    end
   980  @d check_fix(#)==if (tfm[#]>0)and(tfm[#]<255) then
   981    begin tfm[#]:=0; tfm[(#)+1]:=0; tfm[(#)+2]:=0; tfm[(#)+3]:=0;
   982    check_fix_tail
   983  
   984  @<Check and output the $i$th parameter@>=
   985  begin left;
   986  if i=1 then out('SLANT') {this parameter is not checked}
   987  else  begin check_fix(param(i))('Parameter');@/
   988  @.Parameter n is too big@>
   989    @<Output the name of parameter $i$@>;
   990    end;
   991  out_fix(param(i)); right;
   992  end
   993  
   994  @ @<Output the name...@>=
   995  if i<=7 then case i of
   996    2:out('SPACE');@+3:out('STRETCH');@+4:out('SHRINK');
   997    5:out('XHEIGHT');@+6:out('QUAD');@+7:out('EXTRASPACE')@+end
   998  else if (i<=22)and(font_type=mathsy) then case i of
   999    8:out('NUM1');@+9:out('NUM2');@+10:out('NUM3');
  1000    11:out('DENOM1');@+12:out('DENOM2');
  1001    13:out('SUP1');@+14:out('SUP2');@+15:out('SUP3');
  1002    16:out('SUB1');@+17:out('SUB2');
  1003    18:out('SUPDROP');@+19:out('SUBDROP');
  1004    20:out('DELIM1');@+21:out('DELIM2');
  1005    22:out('AXISHEIGHT')@+end
  1006  else if (i<=13)and(font_type=mathex) then
  1007    if i=8 then out('DEFAULTRULETHICKNESS')
  1008    else out('BIGOPSPACING',i-8:1)
  1009  else out('PARAMETER D ',i:1)
  1010  
  1011  @ We need to check the range of all the remaining |fix_word| values,
  1012  and to make sure that |width[0]=0|, etc.
  1013  
  1014  @d nonzero_fix(#)==(tfm[#]>0)or(tfm[#+1]>0)or(tfm[#+2]>0)or(tfm[#+3]>0)
  1015  
  1016  @<Check the |fix_word| entries@>=
  1017  if nonzero_fix(4*width_base) then bad('width[0] should be zero.');
  1018  @.should be zero@>
  1019  if nonzero_fix(4*height_base) then bad('height[0] should be zero.');
  1020  if nonzero_fix(4*depth_base) then bad('depth[0] should be zero.');
  1021  if nonzero_fix(4*italic_base) then bad('italic[0] should be zero.');
  1022  for i:=0 to nw-1 do check_fix(4*(width_base+i))('Width');
  1023  @.Width n is too big@>
  1024  for i:=0 to nh-1 do check_fix(4*(height_base+i))('Height');
  1025  @.Height n is too big@>
  1026  for i:=0 to nd-1 do check_fix(4*(depth_base+i))('Depth');
  1027  @.Depth n is too big@>
  1028  for i:=0 to ni-1 do check_fix(4*(italic_base+i))('Italic correction');
  1029  @.Italic correction n is too big@>
  1030  if nk>0 then for i:=0 to nk-1 do check_fix(kern(i))('Kern');
  1031  @.Kern n is too big@>
  1032  
  1033  @ The ligature/kerning program comes next. Before we can put it out in
  1034  \.{PL} format, we need to make a table of ``labels'' that will be inserted
  1035  into the program. For each character |c| whose |tag| is |lig_tag| and
  1036  whose starting address is |r|, we will store the pair |(c,r)| in the
  1037  |label_table| array. If there's a boundary-char program starting at~|r|,
  1038  we also store the pair |(256,r)|.
  1039  This array is sorted by its second components, using the
  1040  simple method of straight insertion.
  1041  
  1042  @<Glob...@>=
  1043  @!label_table:array[0..258] of record@t@>@/@!cc:0..256;@!rr:0..lig_size;end;
  1044  @!label_ptr: 0..257; {the largest entry in |label_table|}
  1045  @!sort_ptr:0..257; {index into |label_table|}
  1046  @!boundary_char:0..256; {boundary character, or 256 if none}
  1047  @!bchar_label:0..@'77777; {beginning of boundary character program}
  1048  
  1049  @ @<Set init...@>=
  1050  boundary_char:=256; bchar_label:=@'77777;@/
  1051  label_ptr:=0; label_table[0].rr:=0; {a sentinel appears at the bottom}
  1052  
  1053  @ We'll also identify and remove inaccessible program steps, using the
  1054  |activity| array.
  1055  
  1056  @d unreachable=0 {a program step not known to be reachable}
  1057  @d pass_through=1 {a program step passed through on initialization}
  1058  @d accessible=2 {a program step that can be relevant}
  1059  
  1060  @<Glob...@>=
  1061  @!activity:array[0..lig_size] of unreachable..accessible;
  1062  @!ai,@!acti:0..lig_size; {indices into |activity|}
  1063  
  1064  @ @<Do the ligatures and kerns@>=
  1065  if nl>0 then
  1066    begin for ai:=0 to nl-1 do activity[ai]:=unreachable;
  1067    @<Check for a boundary char@>;
  1068    end;
  1069  @<Build the label table@>;
  1070  if nl>0 then
  1071    begin left; out('LIGTABLE'); out_ln;@/
  1072    @<Compute the |activity| array@>;
  1073    @<Output and correct the ligature/kern program@>;
  1074    right;
  1075    @<Check for ligature cycles@>;
  1076    end
  1077  
  1078  @ We build the label table even when |nl=0|, because this catches errors
  1079  that would not otherwise be detected.
  1080  
  1081  @<Build...@>=
  1082  for c:=bc to ec do if tag(c)=lig_tag then
  1083    begin r:=remainder(c);
  1084    if r<nl then
  1085      begin if tfm[lig_step(r)]>stop_flag then
  1086        begin r:=256*tfm[lig_step(r)+2]+tfm[lig_step(r)+3];
  1087        if r<nl then if activity[remainder(c)]=unreachable then
  1088          activity[remainder(c)]:=pass_through;
  1089        end;
  1090      end;
  1091    if r>=nl then
  1092      begin perfect:=false; print_ln(' ');
  1093      print('Ligature/kern starting index for character '); print_octal(c);
  1094      print_ln(' is too large;'); print_ln('so I removed it.'); reset_tag(c);
  1095  @.Ligature/kern starting index...@>
  1096      end
  1097    else @<Insert |(c,r)| into |label_table|@>;
  1098    end;
  1099  label_table[label_ptr+1].rr:=lig_size; {put ``infinite'' sentinel at the end}
  1100  
  1101  @ @<Insert |(c,r)|...@>=
  1102  begin sort_ptr:=label_ptr; {there's a hole at position |sort_ptr+1|}
  1103  while label_table[sort_ptr].rr>r do
  1104    begin label_table[sort_ptr+1]:=label_table[sort_ptr];
  1105    decr(sort_ptr); {move the hole}
  1106    end;
  1107  label_table[sort_ptr+1].cc:=c;
  1108  label_table[sort_ptr+1].rr:=r; {fill the hole}
  1109  incr(label_ptr); activity[r]:=accessible;
  1110  end
  1111  
  1112  @ @<Check for a bound...@>=
  1113  if tfm[lig_step(0)]=255 then
  1114    begin left; out('BOUNDARYCHAR');
  1115    boundary_char:=tfm[lig_step(0)+1]; out_char(boundary_char); right;
  1116    activity[0]:=pass_through;
  1117    end;
  1118  if tfm[lig_step(nl-1)]=255 then
  1119    begin r:=256*tfm[lig_step(nl-1)+2]+tfm[lig_step(nl-1)+3];
  1120    if r>=nl then
  1121      begin perfect:=false; print_ln(' ');
  1122      print('Ligature/kern starting index for boundarychar is too large;');
  1123      print_ln('so I removed it.');
  1124  @.Ligature/kern starting index...@>
  1125      end
  1126    else begin label_ptr:=1; label_table[1].cc:=256; label_table[1].rr:=r;
  1127      bchar_label:=r; activity[r]:=accessible;
  1128      end;
  1129    activity[nl-1]:=pass_through;
  1130    end
  1131  
  1132  @ @<Compute the |activity| array@>=
  1133  for ai:=0 to nl-1 do if activity[ai]=accessible then
  1134    begin r:=tfm[lig_step(ai)];
  1135    if r<stop_flag then
  1136      begin r:=r+ai+1;
  1137      if r>=nl then
  1138        begin bad('Ligature/kern step ',ai:1,' skips too far;');
  1139  @.Lig...skips too far@>
  1140        print_ln('I made it stop.'); tfm[lig_step(ai)]:=stop_flag;
  1141        end
  1142      else activity[r]:=accessible;
  1143      end;
  1144    end
  1145  
  1146  @ We ignore |pass_through| items, which don't need to be mentioned in
  1147  the \.{PL} file.
  1148  
  1149  @<Output and correct the ligature...@>=
  1150  sort_ptr:=1; {point to the next label that will be needed}
  1151  for acti:=0 to nl-1 do if activity[acti]<>pass_through then
  1152    begin i:=acti; @<Take care of commenting out unreachable steps@>;
  1153    @<Output any labels for step $i$@>;
  1154    @<Output step $i$ of the ligature/kern program@>;
  1155    end;
  1156  if level=2 then right {the final step was unreachable}
  1157  
  1158  @ @<Output any labels...@>=
  1159  while i=label_table[sort_ptr].rr do
  1160    begin left; out('LABEL');
  1161    if label_table[sort_ptr].cc=256 then out(' BOUNDARYCHAR')
  1162    else out_char(label_table[sort_ptr].cc);
  1163    right; incr(sort_ptr);
  1164    end
  1165  
  1166  @ @<Take care of commenting out...@>=
  1167  if activity[i]=unreachable then
  1168    begin if level=1 then
  1169      begin left; out('COMMENT THIS PART OF THE PROGRAM IS NEVER USED!'); out_ln;
  1170      end
  1171    end
  1172  else if level=2 then right
  1173  
  1174  @ @<Output step $i$...@>=
  1175  begin k:=lig_step(i);
  1176  if tfm[k]>stop_flag then
  1177    begin if 256*tfm[k+2]+tfm[k+3]>=nl then
  1178      bad('Ligature unconditional stop command address is too big.');
  1179  @.Ligature unconditional stop...@>
  1180    end
  1181  else if tfm[k+2]>=kern_flag then @<Output a kern step@>
  1182  else @<Output a ligature step@>;
  1183  if tfm[k]>0 then
  1184    if level=1 then @<Output either \.{SKIP} or \.{STOP}@>;
  1185  end
  1186  
  1187  @ The \.{SKIP} command is a bit tricky, because we will be omitting all
  1188  inaccessible commands.
  1189  
  1190  @<Output either...@>=
  1191  begin if tfm[k]>=stop_flag then out('(STOP)')
  1192  else begin count:=0;
  1193    for ai:=i+1 to i+tfm[k] do if activity[ai]=accessible then incr(count);
  1194    out('(SKIP D ',count:1,')'); {possibly $count=0$, so who cares}
  1195    end;
  1196  out_ln;
  1197  end
  1198  
  1199  @ @<Output a kern step@>=
  1200  begin if nonexistent(tfm[k+1]) then if tfm[k+1]<>boundary_char then
  1201    correct_bad_char('Kern step for')(k+1);
  1202  @.Kern step for nonexistent...@>
  1203  left; out('KRN'); out_char(tfm[k+1]);
  1204  r:=256*(tfm[k+2]-kern_flag)+tfm[k+3];
  1205  if r>=nk then
  1206    begin bad('Kern index too large.');
  1207  @.Kern index too large@>
  1208    out(' R 0.0');
  1209    end
  1210  else out_fix(kern(r));
  1211  right;
  1212  end
  1213  
  1214  @ @<Output a ligature step@>=
  1215  begin if nonexistent(tfm[k+1]) then if tfm[k+1]<>boundary_char then
  1216    correct_bad_char('Ligature step for')(k+1);
  1217  @.Ligature step for nonexistent...@>
  1218  if nonexistent(tfm[k+3]) then
  1219    correct_bad_char('Ligature step produces the')(k+3);
  1220  @.Ligature step produces...@>
  1221  left; r:=tfm[k+2];
  1222  if (r=4)or((r>7)and(r<>11)) then
  1223    begin print_ln('Ligature step with nonstandard code changed to LIG');
  1224    r:=0; tfm[k+2]:=0;
  1225    end;
  1226  if r mod 4>1 then out('/');
  1227  out('LIG');
  1228  if odd(r) then out('/');
  1229  while r>3 do
  1230    begin out('>'); r:=r-4;
  1231    end;
  1232  out_char(tfm[k+1]); out_char(tfm[k+3]); right;
  1233  end
  1234  
  1235  @ The last thing on \.{TFtoPL}'s agenda is to go through the
  1236  list of |char_info| and spew out the information about each individual
  1237  character.
  1238  
  1239  @<Do the characters@>=
  1240  sort_ptr:=0; {this will suppress `\.{STOP}' lines in ligature comments}
  1241  for c:=bc to ec do if width_index(c)>0 then
  1242    begin if chars_on_line=8 then
  1243      begin print_ln(' '); chars_on_line:=1;
  1244      end
  1245    else  begin if chars_on_line>0 then print(' ');
  1246      incr(chars_on_line);
  1247      end;
  1248    print_octal(c); {progress report}
  1249    left; out('CHARACTER'); out_char(c); out_ln;
  1250    @<Output the character's width@>;
  1251    if height_index(c)>0 then @<Output the character's height@>;
  1252    if depth_index(c)>0 then @<Output the character's depth@>;
  1253    if italic_index(c)>0 then @<Output the italic correction@>;
  1254    case tag(c) of
  1255    no_tag: do_nothing;
  1256    lig_tag: @<Output the applicable part of the ligature/kern
  1257      program as a comment@>;
  1258    list_tag: @<Output the character link unless there is a problem@>;
  1259    ext_tag: @<Output an extensible character recipe@>;
  1260    end; {there are no other cases}
  1261    right;
  1262    end
  1263  
  1264  @ @<Output the character's width@>=
  1265  begin left; out('CHARWD');
  1266  if width_index(c)>=nw then range_error('Width')
  1267  else out_fix(width(c));
  1268  right;
  1269  end
  1270  
  1271  @ @<Output the character's height@>=
  1272  if height_index(c)>=nh then range_error('Height')
  1273  @.Height index for char...@>
  1274  else  begin left; out('CHARHT'); out_fix(height(c)); right;
  1275    end
  1276  
  1277  @ @<Output the character's depth@>=
  1278  if depth_index(c)>=nd then range_error('Depth')
  1279  @.Depth index for char@>
  1280  else  begin left; out('CHARDP'); out_fix(depth(c)); right;
  1281    end
  1282  
  1283  @ @<Output the italic correction@>=
  1284  if italic_index(c)>=ni then range_error('Italic correction')
  1285  @.Italic correction index for char...@>
  1286  else  begin left; out('CHARIC'); out_fix(italic(c)); right;
  1287    end
  1288  
  1289  @ @<Output the applicable part of the ligature...@>=
  1290  begin left; out('COMMENT'); out_ln;@/
  1291  i:=remainder(c); r:=lig_step(i);
  1292  if tfm[r]>stop_flag then i:=256*tfm[r+2]+tfm[r+3];
  1293  repeat @<Output step...@>;
  1294  if tfm[k]>=stop_flag then i:=nl
  1295  else i:=i+1+tfm[k];
  1296  until i>=nl;
  1297  right;
  1298  end
  1299  
  1300  @ We want to make sure that there is no cycle of characters linked together
  1301  by |list_tag| entries, since \TeX\ doesn't want to risk endless loops.
  1302  If such a cycle exists, the routine here detects it when processing
  1303  the largest character code in the cycle.
  1304  
  1305  @<Output the character link unless there is a problem@>=
  1306  begin r:=remainder(c);
  1307  if nonexistent(r) then
  1308    begin bad_char('Character list link to')(r); reset_tag(c);
  1309  @.Character list link...@>
  1310    end
  1311  else  begin while (r<c)and(tag(r)=list_tag) do r:=remainder(r);
  1312    if r=c then
  1313      begin bad('Cycle in a character list!');
  1314  @.Cycle in a character list@>
  1315      print('Character '); print_octal(c);
  1316      print_ln(' now ends the list.');
  1317      reset_tag(c);
  1318      end
  1319    else  begin left; out('NEXTLARGER'); out_char(remainder(c));
  1320      right;
  1321      end;
  1322    end;
  1323  end
  1324  
  1325  @ @<Output an extensible character recipe@>=
  1326  if remainder(c)>=ne then
  1327    begin range_error('Extensible'); reset_tag(c);
  1328  @.Extensible index for char@>
  1329    end
  1330  else  begin left; out('VARCHAR'); out_ln;
  1331    @<Output the extensible pieces that exist@>;
  1332    right;
  1333    end
  1334  
  1335  @ @<Output the extensible pieces that...@>=
  1336  for k:=0 to 3 do if (k=3)or(tfm[exten(c)+k]>0) then
  1337    begin left;
  1338    case k of
  1339    0:out('TOP');@+1:out('MID');@+2:out('BOT');@+3:out('REP')@+end;
  1340    if nonexistent(tfm[exten(c)+k]) then out_char(c)
  1341    else out_char(tfm[exten(c)+k]);
  1342    right;
  1343    end
  1344  
  1345  @ Some of the extensible recipes may not actually be used, but \TeX\ will
  1346  complain about them anyway if they refer to nonexistent characters.
  1347  Therefore \.{TFtoPL} must check them too.
  1348  
  1349  @<Check the extensible recipes@>=
  1350  if ne>0 then for c:=0 to ne-1 do for d:=0 to 3 do
  1351    begin k:=4*(exten_base+c)+d;
  1352    if (tfm[k]>0)or(d=3) then
  1353      begin if nonexistent(tfm[k]) then
  1354        begin bad_char('Extensible recipe involves the')(tfm[k]);
  1355  @.Extensible recipe involves...@>
  1356        if d<3 then tfm[k]:=0;
  1357        end;
  1358      end;
  1359    end
  1360  
  1361  @* Checking for ligature loops.
  1362  We have programmed almost everything but the most interesting calculation of
  1363  all, which has been saved for last as a special treat. \TeX's extended ligature
  1364  mechanism allows unwary users to specify sequences of ligature replacements
  1365  that never terminate. For example, the pair of commands
  1366  $$\.{(/LIG $x$ $y$) (/LIG $y$ $x$)}$$
  1367  alternately replaces character $x$ by character $y$ and vice versa. A similar
  1368  loop occurs if \.{(LIG/ $z$ $y$)} occurs in the program for $x$ and
  1369   \.{(LIG/ $z$ $x$)} occurs in the program for $y$.
  1370  
  1371  More complicated loops are also possible. For example, suppose the ligature
  1372  programs for $x$ and $y$ are
  1373  $$\vcenter{\halign{#\hfil\cr
  1374  \.{(LABEL $x$)(/LIG/ $z$ $w$)(/LIG/> $w$ $y$)} \dots,\cr
  1375  \.{(LABEL $y$)(LIG $w$ $x$)} \dots;\cr}}$$
  1376  then the adjacent characters $xz$ change to $xwz$, $xywz$, $xxz$, $xxwz$,
  1377  \dots, ad infinitum.
  1378  
  1379  @ To detect such loops, \.{TFtoPL} attempts to evaluate the function
  1380  $f(x,y)$ for all character pairs $x$ and~$y$, where $f$ is defined as
  1381  follows: If the current character is $x$ and the next character is
  1382  $y$, we say the ``cursor'' is between $x$ and $y$; when the cursor
  1383  first moves past $y$, the character immediately to its left is
  1384  $f(x,y)$. This function is defined if and only if no infinite loop is
  1385  generated when the cursor is between $x$ and~$y$.
  1386  
  1387  The function $f(x,y)$ can be defined recursively. It turns out that all pairs
  1388  $(x,y)$ belong to one of five classes. The simplest class has $f(x,y)=y$; this
  1389  happens if there's no ligature between $x$ and $y$, or in the cases
  1390  \.{LIG/>} and \.{/LIG/>>}. Another simple class arises when there's a
  1391  \.{LIG} or \.{/LIG>} between $x$ and~$y$, generating the character~$z$;
  1392  then $f(x,y)=z$. Otherwise we always have $f(x,y)$ equal to
  1393  either $f(x,z)$ or $f(z,y)$ or $f(f(x,z),y)$, where $z$ is the inserted
  1394  ligature character.
  1395  
  1396  The first two of these classes can be merged; we can also consider
  1397  $(x,y)$ to belong to the simple class when $f(x,y)$ has been evaluated.
  1398  For technical reasons we allow $x$ to be 256 (for the boundary character
  1399  at the left) or 257 (in cases when an error has been detected).
  1400  
  1401  For each pair $(x,y)$ having a ligature program step, we store
  1402  $(x,y)$ in a hash table from which the values $z$ and $class$ can be read.
  1403  
  1404  @d simple=0 {$f(x,y)=z$}
  1405  @d left_z=1 {$f(x,y)=f(z,y)$}
  1406  @d right_z=2 {$f(x,y)=f(x,z)$}
  1407  @d both_z=3 {$f(x,y)=f(f(x,z),y)$}
  1408  @d pending=4 {$f(x,y)$ is being evaluated}
  1409  
  1410  @<Glob...@>=
  1411  @!hash:array[0..hash_size] of 0..66048; {$256x+y+1$ for $x\le257$ and $y\le255$}
  1412  @!class:array[0..hash_size] of simple..pending;
  1413  @!lig_z:array[0..hash_size] of 0..257;
  1414  @!hash_ptr:0..hash_size; {the number of nonzero entries in |hash|}
  1415  @!hash_list:array[0..hash_size] of 0..hash_size; {list of those nonzero entries}
  1416  @!h,@!hh:0..hash_size; {indices into the hash table}
  1417  @!x_lig_cycle,@!y_lig_cycle:0..256; {problematic ligature pair}
  1418  
  1419  @ @<Check for ligature cycles@>=
  1420  hash_ptr:=0; y_lig_cycle:=256;
  1421  for hh:=0 to hash_size do hash[hh]:=0; {clear the hash table}
  1422  for c:=bc to ec do if tag(c)=lig_tag then
  1423    begin i:=remainder(c);
  1424    if tfm[lig_step(i)]>stop_flag then
  1425      i:=256*tfm[lig_step(i)+2]+tfm[lig_step(i)+3];
  1426    @<Enter data for character $c$ starting at location |i| in the hash table@>;
  1427    end;
  1428  if bchar_label<nl then
  1429    begin c:=256; i:=bchar_label;
  1430    @<Enter data for character $c$ starting at location |i| in the hash table@>;
  1431    end;
  1432  if hash_ptr=hash_size then
  1433    begin print_ln('Sorry, I haven''t room for so many ligature/kern pairs!');
  1434  @.Sorry, I haven't room...@>
  1435    goto final_end;
  1436    end;
  1437  for hh:=1 to hash_ptr do
  1438    begin r:=hash_list[hh];
  1439    if class[r]>simple then {make sure $f$ is defined}
  1440       r:=f(r,(hash[r]-1)div 256,(hash[r]-1)mod 256);
  1441    end;
  1442  if y_lig_cycle<256 then
  1443    begin  print('Infinite ligature loop starting with ');
  1444  @.Infinite ligature loop...@>
  1445    if x_lig_cycle=256 then print('boundary')@+else print_octal(x_lig_cycle);
  1446    print(' and '); print_octal(y_lig_cycle); print_ln('!');
  1447    out('(INFINITE LIGATURE LOOP MUST BE BROKEN!)'); goto final_end;
  1448    end
  1449  
  1450  @ @<Enter data for character $c$...@>=
  1451  repeat hash_input; k:=tfm[lig_step(i)];
  1452  if k>=stop_flag then i:=nl
  1453  else i:=i+1+k;
  1454  until i>=nl
  1455  
  1456  @ We use an ``ordered hash table'' with linear probing, because such a table
  1457  is efficient when the lookup of a random key tends to be unsuccessful.
  1458  
  1459  @p procedure hash_input; {enter data for character |c| and command |i|}
  1460  label 30; {go here for a quick exit}
  1461  var @!cc:simple..both_z; {class of data being entered}
  1462  @!zz:0..255; {function value or ligature character being entered}
  1463  @!y:0..255; {the character after the cursor}
  1464  @!key:integer; {value to be stored in |hash|}
  1465  @!t:integer; {temporary register for swapping}
  1466  begin if hash_ptr=hash_size then goto 30;
  1467  @<Compute the command parameters |y|, |cc|, and |zz|@>;
  1468  key:=256*c+y+1; h:=(1009*key) mod hash_size;
  1469  while hash[h]>0 do
  1470    begin if hash[h]<=key then
  1471      begin if hash[h]=key then goto 30; {unused ligature command}
  1472      t:=hash[h]; hash[h]:=key; key:=t; {do ordered-hash-table insertion}
  1473      t:=class[h]; class[h]:=cc; cc:=t; {namely, do a swap}
  1474      t:=lig_z[h]; lig_z[h]:=zz; zz:=t;
  1475      end;
  1476    if h>0 then decr(h)@+else h:=hash_size;
  1477    end;
  1478  hash[h]:=key; class[h]:=cc; lig_z[h]:=zz;
  1479  incr(hash_ptr); hash_list[hash_ptr]:=h;
  1480  30:end;
  1481  
  1482  @ We must store kern commands as well as ligature commands, because the former
  1483  might make the latter inapplicable.
  1484  
  1485  @<Compute the command param...@>=
  1486  k:=lig_step(i); y:=tfm[k+1]; t:=tfm[k+2]; cc:=simple; zz:=tfm[k+3];
  1487  if t>=kern_flag then zz:=y
  1488  else begin case t of
  1489    0,6:do_nothing; {\.{LIG},\.{/LIG>}}
  1490    5,11:zz:=y; {\.{LIG/>}, \.{/LIG/>>}}
  1491    1,7:cc:=left_z; {\.{LIG/}, \.{/LIG/>}}
  1492    2:cc:=right_z; {\.{/LIG}}
  1493    3:cc:=both_z; {\.{/LIG/}}
  1494    end; {there are no other cases}
  1495    end
  1496  
  1497  @ Evaluation of $f(x,y)$ is handled by two mutually recursive procedures.
  1498  Kind of a neat algorithm, generalizing a depth-first search.
  1499  
  1500  @p function f(@!h,@!x,@!y:index):index; forward;@t\2@>
  1501    {compute $f$ for arguments known to be in |hash[h]|}
  1502  function eval(@!x,@!y:index):index; {compute $f(x,y)$ with hashtable lookup}
  1503  var @!key:integer; {value sought in hash table}
  1504  begin key:=256*x+y+1; h:=(1009*key) mod hash_size;
  1505  while hash[h]>key do
  1506    if h>0 then decr(h)@+else h:=hash_size;
  1507  if hash[h]<key then eval:=y {not in ordered hash table}
  1508  else eval:=f(h,x,y);
  1509  end;
  1510  
  1511  @ Pascal's beastly convention for |forward| declarations prevents us from
  1512  saying |function f(h,x,y:index):index| here.
  1513  
  1514  @p function f;
  1515  begin case class[h] of
  1516  simple: do_nothing;
  1517  left_z: begin class[h]:=pending; lig_z[h]:=eval(lig_z[h],y); class[h]:=simple;
  1518    end;
  1519  right_z: begin class[h]:=pending; lig_z[h]:=eval(x,lig_z[h]); class[h]:=simple;
  1520    end;
  1521  both_z: begin class[h]:=pending; lig_z[h]:=eval(eval(x,lig_z[h]),y);
  1522    class[h]:=simple;
  1523    end;
  1524  pending: begin x_lig_cycle:=x; y_lig_cycle:=y; lig_z[h]:=257; class[h]:=simple;
  1525    end; {the value 257 will break all cycles, since it's not in |hash|}
  1526  end; {there are no other cases}
  1527  f:=lig_z[h];
  1528  end;
  1529  
  1530  @* The main program.
  1531  The routines sketched out so far need to be packaged into separate procedures,
  1532  on some systems, since some \PASCAL\ compilers place a strict limit on the
  1533  size of a routine. The packaging is done here in an attempt to avoid some
  1534  system-dependent changes.
  1535  
  1536  First comes the |organize| procedure, which reads the input data and
  1537  gets ready for subsequent events. If something goes wrong, the routine
  1538  returns |false|.
  1539  
  1540  @p function organize:boolean;
  1541  label final_end, 30;
  1542  var tfm_ptr:index; {an index into |tfm|}
  1543  begin @<Read the whole input file@>;@/
  1544  @<Set subfile sizes |lh|, |bc|, \dots, |np|@>;@/
  1545  @<Compute the base addresses@>;@/
  1546  organize:=true; goto 30;
  1547  final_end: organize:=false;
  1548  30: end;
  1549  
  1550  @ Next we do the simple things.
  1551  
  1552  @p procedure do_simple_things;
  1553  var i:0..@'77777; {an index to words of a subfile}
  1554  begin @<Do the header@>;@/
  1555  @<Do the parameters@>;@/
  1556  @<Check the |fix_word| entries@>@/
  1557  end;
  1558  
  1559  @ And then there's a routine for individual characters.
  1560  
  1561  @p procedure do_characters;
  1562  var @!c:byte; {character being done}
  1563  @!k:index; {a random index}
  1564  @!ai:0..lig_size; {index into |activity|}
  1565  begin @<Do the characters@>;@/
  1566  end;
  1567  
  1568  @ Here is where \.{TFtoPL} begins and ends.
  1569  @p begin initialize;@/
  1570  if not organize then goto final_end;
  1571  do_simple_things;@/
  1572  @<Do the ligatures and kerns@>;
  1573  @<Check the extensible recipes@>;
  1574  do_characters; print_ln('.');@/
  1575  if level<>0 then print_ln('This program isn''t working!');
  1576  @.This program isn't working@>
  1577  if not perfect then
  1578    begin out('(COMMENT THE TFM FILE WAS BAD, SO THE DATA HAS BEEN CHANGED!)');
  1579  @.THE TFM FILE WAS BAD...@>
  1580    write_ln(pl_file);
  1581    end;
  1582  final_end:end.
  1583  
  1584  @* System-dependent changes.
  1585  This section should be replaced, if necessary, by changes to the program
  1586  that are necessary to make \.{TFtoPL} work at a particular installation.
  1587  It is usually best to design your change file so that all changes to
  1588  previous sections preserve the section numbering; then everybody's version
  1589  will be consistent with the printed program. More extensive changes,
  1590  which introduce new sections, can be inserted here; then only the index
  1591  itself will get a new section number.
  1592  @^system dependencies@>
  1593  
  1594  @* Index.
  1595  Pointers to error messages appear here together with the section numbers
  1596  where each ident\-i\-fier is used.