rsc.io/go@v0.0.0-20150416155037-e040fd465409/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of March 20, 2015",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <!--
     8  TODO
     9  [ ] need language about function/method calls and parameter passing rules
    10  [ ] last paragraph of #Assignments (constant promotion) should be elsewhere
    11      and mention assignment to empty interface.
    12  [ ] need to say something about "scope" of selectors?
    13  [ ] clarify what a field name is in struct declarations
    14      (struct{T} vs struct {T T} vs struct {t T})
    15  [ ] need explicit language about the result type of operations
    16  [ ] should probably write something about evaluation order of statements even
    17  	though obvious
    18  [ ] in Selectors section, clarify what receiver value is passed in method invocations
    19  -->
    20  
    21  
    22  <h2 id="Introduction">Introduction</h2>
    23  
    24  <p>
    25  This is a reference manual for the Go programming language. For
    26  more information and other documents, see <a href="/">golang.org</a>.
    27  </p>
    28  
    29  <p>
    30  Go is a general-purpose language designed with systems programming
    31  in mind. It is strongly typed and garbage-collected and has explicit
    32  support for concurrent programming.  Programs are constructed from
    33  <i>packages</i>, whose properties allow efficient management of
    34  dependencies. The existing implementations use a traditional
    35  compile/link model to generate executable binaries.
    36  </p>
    37  
    38  <p>
    39  The grammar is compact and regular, allowing for easy analysis by
    40  automatic tools such as integrated development environments.
    41  </p>
    42  
    43  <h2 id="Notation">Notation</h2>
    44  <p>
    45  The syntax is specified using Extended Backus-Naur Form (EBNF):
    46  </p>
    47  
    48  <pre class="grammar">
    49  Production  = production_name "=" [ Expression ] "." .
    50  Expression  = Alternative { "|" Alternative } .
    51  Alternative = Term { Term } .
    52  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    53  Group       = "(" Expression ")" .
    54  Option      = "[" Expression "]" .
    55  Repetition  = "{" Expression "}" .
    56  </pre>
    57  
    58  <p>
    59  Productions are expressions constructed from terms and the following
    60  operators, in increasing precedence:
    61  </p>
    62  <pre class="grammar">
    63  |   alternation
    64  ()  grouping
    65  []  option (0 or 1 times)
    66  {}  repetition (0 to n times)
    67  </pre>
    68  
    69  <p>
    70  Lower-case production names are used to identify lexical tokens.
    71  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    72  double quotes <code>""</code> or back quotes <code>``</code>.
    73  </p>
    74  
    75  <p>
    76  The form <code>a … b</code> represents the set of characters from
    77  <code>a</code> through <code>b</code> as alternatives. The horizontal
    78  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    79  enumerations or code snippets that are not further specified. The character <code>…</code>
    80  (as opposed to the three characters <code>...</code>) is not a token of the Go
    81  language.
    82  </p>
    83  
    84  <h2 id="Source_code_representation">Source code representation</h2>
    85  
    86  <p>
    87  Source code is Unicode text encoded in
    88  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    89  canonicalized, so a single accented code point is distinct from the
    90  same character constructed from combining an accent and a letter;
    91  those are treated as two code points.  For simplicity, this document
    92  will use the unqualified term <i>character</i> to refer to a Unicode code point
    93  in the source text.
    94  </p>
    95  <p>
    96  Each code point is distinct; for instance, upper and lower case letters
    97  are different characters.
    98  </p>
    99  <p>
   100  Implementation restriction: For compatibility with other tools, a
   101  compiler may disallow the NUL character (U+0000) in the source text.
   102  </p>
   103  <p>
   104  Implementation restriction: For compatibility with other tools, a
   105  compiler may ignore a UTF-8-encoded byte order mark
   106  (U+FEFF) if it is the first Unicode code point in the source text.
   107  A byte order mark may be disallowed anywhere else in the source.
   108  </p>
   109  
   110  <h3 id="Characters">Characters</h3>
   111  
   112  <p>
   113  The following terms are used to denote specific Unicode character classes:
   114  </p>
   115  <pre class="ebnf">
   116  newline        = /* the Unicode code point U+000A */ .
   117  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   118  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   119  unicode_digit  = /* a Unicode code point classified as "Decimal Digit" */ .
   120  </pre>
   121  
   122  <p>
   123  In <a href="http://www.unicode.org/versions/Unicode6.3.0/">The Unicode Standard 6.3</a>,
   124  Section 4.5 "General Category"
   125  defines a set of character categories.  Go treats
   126  those characters in category Lu, Ll, Lt, Lm, or Lo as Unicode letters,
   127  and those in category Nd as Unicode digits.
   128  </p>
   129  
   130  <h3 id="Letters_and_digits">Letters and digits</h3>
   131  
   132  <p>
   133  The underscore character <code>_</code> (U+005F) is considered a letter.
   134  </p>
   135  <pre class="ebnf">
   136  letter        = unicode_letter | "_" .
   137  decimal_digit = "0" … "9" .
   138  octal_digit   = "0" … "7" .
   139  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   140  </pre>
   141  
   142  <h2 id="Lexical_elements">Lexical elements</h2>
   143  
   144  <h3 id="Comments">Comments</h3>
   145  
   146  <p>
   147  There are two forms of comments:
   148  </p>
   149  
   150  <ol>
   151  <li>
   152  <i>Line comments</i> start with the character sequence <code>//</code>
   153  and stop at the end of the line. A line comment acts like a newline.
   154  </li>
   155  <li>
   156  <i>General comments</i> start with the character sequence <code>/*</code>
   157  and continue through the character sequence <code>*/</code>. A general
   158  comment containing one or more newlines acts like a newline, otherwise it acts
   159  like a space.
   160  </li>
   161  </ol>
   162  
   163  <p>
   164  Comments do not nest.
   165  </p>
   166  
   167  
   168  <h3 id="Tokens">Tokens</h3>
   169  
   170  <p>
   171  Tokens form the vocabulary of the Go language.
   172  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   173  and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
   174  spaces (U+0020), horizontal tabs (U+0009),
   175  carriage returns (U+000D), and newlines (U+000A),
   176  is ignored except as it separates tokens
   177  that would otherwise combine into a single token. Also, a newline or end of file
   178  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   179  While breaking the input into tokens,
   180  the next token is the longest sequence of characters that form a
   181  valid token.
   182  </p>
   183  
   184  <h3 id="Semicolons">Semicolons</h3>
   185  
   186  <p>
   187  The formal grammar uses semicolons <code>";"</code> as terminators in
   188  a number of productions. Go programs may omit most of these semicolons
   189  using the following two rules:
   190  </p>
   191  
   192  <ol>
   193  <li>
   194  <p>
   195  When the input is broken into tokens, a semicolon is automatically inserted
   196  into the token stream at the end of a non-blank line if the line's final
   197  token is
   198  </p>
   199  <ul>
   200  	<li>an
   201  	    <a href="#Identifiers">identifier</a>
   202  	</li>
   203  
   204  	<li>an
   205  	    <a href="#Integer_literals">integer</a>,
   206  	    <a href="#Floating-point_literals">floating-point</a>,
   207  	    <a href="#Imaginary_literals">imaginary</a>,
   208  	    <a href="#Rune_literals">rune</a>, or
   209  	    <a href="#String_literals">string</a> literal
   210  	</li>
   211  
   212  	<li>one of the <a href="#Keywords">keywords</a>
   213  	    <code>break</code>,
   214  	    <code>continue</code>,
   215  	    <code>fallthrough</code>, or
   216  	    <code>return</code>
   217  	</li>
   218  
   219  	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
   220  	    <code>++</code>,
   221  	    <code>--</code>,
   222  	    <code>)</code>,
   223  	    <code>]</code>, or
   224  	    <code>}</code>
   225  	</li>
   226  </ul>
   227  </li>
   228  
   229  <li>
   230  To allow complex statements to occupy a single line, a semicolon
   231  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   232  </li>
   233  </ol>
   234  
   235  <p>
   236  To reflect idiomatic use, code examples in this document elide semicolons
   237  using these rules.
   238  </p>
   239  
   240  
   241  <h3 id="Identifiers">Identifiers</h3>
   242  
   243  <p>
   244  Identifiers name program entities such as variables and types.
   245  An identifier is a sequence of one or more letters and digits.
   246  The first character in an identifier must be a letter.
   247  </p>
   248  <pre class="ebnf">
   249  identifier = letter { letter | unicode_digit } .
   250  </pre>
   251  <pre>
   252  a
   253  _x9
   254  ThisVariableIsExported
   255  αβ
   256  </pre>
   257  
   258  <p>
   259  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   260  </p>
   261  
   262  
   263  <h3 id="Keywords">Keywords</h3>
   264  
   265  <p>
   266  The following keywords are reserved and may not be used as identifiers.
   267  </p>
   268  <pre class="grammar">
   269  break        default      func         interface    select
   270  case         defer        go           map          struct
   271  chan         else         goto         package      switch
   272  const        fallthrough  if           range        type
   273  continue     for          import       return       var
   274  </pre>
   275  
   276  <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
   277  
   278  <p>
   279  The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
   280  </p>
   281  <pre class="grammar">
   282  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   283  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   284  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   285  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   286  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   287       &amp;^          &amp;^=
   288  </pre>
   289  
   290  <h3 id="Integer_literals">Integer literals</h3>
   291  
   292  <p>
   293  An integer literal is a sequence of digits representing an
   294  <a href="#Constants">integer constant</a>.
   295  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   296  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   297  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   298  </p>
   299  <pre class="ebnf">
   300  int_lit     = decimal_lit | octal_lit | hex_lit .
   301  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   302  octal_lit   = "0" { octal_digit } .
   303  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   304  </pre>
   305  
   306  <pre>
   307  42
   308  0600
   309  0xBadFace
   310  170141183460469231731687303715884105727
   311  </pre>
   312  
   313  <h3 id="Floating-point_literals">Floating-point literals</h3>
   314  <p>
   315  A floating-point literal is a decimal representation of a
   316  <a href="#Constants">floating-point constant</a>.
   317  It has an integer part, a decimal point, a fractional part,
   318  and an exponent part.  The integer and fractional part comprise
   319  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   320  followed by an optionally signed decimal exponent.  One of the
   321  integer part or the fractional part may be elided; one of the decimal
   322  point or the exponent may be elided.
   323  </p>
   324  <pre class="ebnf">
   325  float_lit = decimals "." [ decimals ] [ exponent ] |
   326              decimals exponent |
   327              "." decimals [ exponent ] .
   328  decimals  = decimal_digit { decimal_digit } .
   329  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   330  </pre>
   331  
   332  <pre>
   333  0.
   334  72.40
   335  072.40  // == 72.40
   336  2.71828
   337  1.e+0
   338  6.67428e-11
   339  1E6
   340  .25
   341  .12345E+5
   342  </pre>
   343  
   344  <h3 id="Imaginary_literals">Imaginary literals</h3>
   345  <p>
   346  An imaginary literal is a decimal representation of the imaginary part of a
   347  <a href="#Constants">complex constant</a>.
   348  It consists of a
   349  <a href="#Floating-point_literals">floating-point literal</a>
   350  or decimal integer followed
   351  by the lower-case letter <code>i</code>.
   352  </p>
   353  <pre class="ebnf">
   354  imaginary_lit = (decimals | float_lit) "i" .
   355  </pre>
   356  
   357  <pre>
   358  0i
   359  011i  // == 11i
   360  0.i
   361  2.71828i
   362  1.e+0i
   363  6.67428e-11i
   364  1E6i
   365  .25i
   366  .12345E+5i
   367  </pre>
   368  
   369  
   370  <h3 id="Rune_literals">Rune literals</h3>
   371  
   372  <p>
   373  A rune literal represents a <a href="#Constants">rune constant</a>,
   374  an integer value identifying a Unicode code point.
   375  A rune literal is expressed as one or more characters enclosed in single quotes.
   376  Within the quotes, any character may appear except single
   377  quote and newline. A single quoted character represents the Unicode value
   378  of the character itself,
   379  while multi-character sequences beginning with a backslash encode
   380  values in various formats.
   381  </p>
   382  <p>
   383  The simplest form represents the single character within the quotes;
   384  since Go source text is Unicode characters encoded in UTF-8, multiple
   385  UTF-8-encoded bytes may represent a single integer value.  For
   386  instance, the literal <code>'a'</code> holds a single byte representing
   387  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   388  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   389  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   390  </p>
   391  <p>
   392  Several backslash escapes allow arbitrary values to be encoded as
   393  ASCII text.  There are four ways to represent the integer value
   394  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   395  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   396  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   397  plain backslash <code>\</code> followed by exactly three octal digits.
   398  In each case the value of the literal is the value represented by
   399  the digits in the corresponding base.
   400  </p>
   401  <p>
   402  Although these representations all result in an integer, they have
   403  different valid ranges.  Octal escapes must represent a value between
   404  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   405  by construction. The escapes <code>\u</code> and <code>\U</code>
   406  represent Unicode code points so within them some values are illegal,
   407  in particular those above <code>0x10FFFF</code> and surrogate halves.
   408  </p>
   409  <p>
   410  After a backslash, certain single-character escapes represent special values:
   411  </p>
   412  <pre class="grammar">
   413  \a   U+0007 alert or bell
   414  \b   U+0008 backspace
   415  \f   U+000C form feed
   416  \n   U+000A line feed or newline
   417  \r   U+000D carriage return
   418  \t   U+0009 horizontal tab
   419  \v   U+000b vertical tab
   420  \\   U+005c backslash
   421  \'   U+0027 single quote  (valid escape only within rune literals)
   422  \"   U+0022 double quote  (valid escape only within string literals)
   423  </pre>
   424  <p>
   425  All other sequences starting with a backslash are illegal inside rune literals.
   426  </p>
   427  <pre class="ebnf">
   428  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   429  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   430  byte_value       = octal_byte_value | hex_byte_value .
   431  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   432  hex_byte_value   = `\` "x" hex_digit hex_digit .
   433  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   434  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   435                             hex_digit hex_digit hex_digit hex_digit .
   436  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   437  </pre>
   438  
   439  <pre>
   440  'a'
   441  'ä'
   442  '本'
   443  '\t'
   444  '\000'
   445  '\007'
   446  '\377'
   447  '\x07'
   448  '\xff'
   449  '\u12e4'
   450  '\U00101234'
   451  'aa'         // illegal: too many characters
   452  '\xa'        // illegal: too few hexadecimal digits
   453  '\0'         // illegal: too few octal digits
   454  '\uDFFF'     // illegal: surrogate half
   455  '\U00110000' // illegal: invalid Unicode code point
   456  </pre>
   457  
   458  
   459  <h3 id="String_literals">String literals</h3>
   460  
   461  <p>
   462  A string literal represents a <a href="#Constants">string constant</a>
   463  obtained from concatenating a sequence of characters. There are two forms:
   464  raw string literals and interpreted string literals.
   465  </p>
   466  <p>
   467  Raw string literals are character sequences between back quotes
   468  <code>``</code>.  Within the quotes, any character is legal except
   469  back quote. The value of a raw string literal is the
   470  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   471  between the quotes;
   472  in particular, backslashes have no special meaning and the string may
   473  contain newlines.
   474  Carriage return characters ('\r') inside raw string literals
   475  are discarded from the raw string value.
   476  </p>
   477  <p>
   478  Interpreted string literals are character sequences between double
   479  quotes <code>&quot;&quot;</code>. The text between the quotes,
   480  which may not contain newlines, forms the
   481  value of the literal, with backslash escapes interpreted as they
   482  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   483  <code>\"</code> is legal), with the same restrictions.
   484  The three-digit octal (<code>\</code><i>nnn</i>)
   485  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   486  <i>bytes</i> of the resulting string; all other escapes represent
   487  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   488  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   489  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   490  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   491  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   492  U+00FF.
   493  </p>
   494  
   495  <pre class="ebnf">
   496  string_lit             = raw_string_lit | interpreted_string_lit .
   497  raw_string_lit         = "`" { unicode_char | newline } "`" .
   498  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   499  </pre>
   500  
   501  <pre>
   502  `abc`  // same as "abc"
   503  `\n
   504  \n`    // same as "\\n\n\\n"
   505  "\n"
   506  ""
   507  "Hello, world!\n"
   508  "日本語"
   509  "\u65e5本\U00008a9e"
   510  "\xff\u00FF"
   511  "\uD800"       // illegal: surrogate half
   512  "\U00110000"   // illegal: invalid Unicode code point
   513  </pre>
   514  
   515  <p>
   516  These examples all represent the same string:
   517  </p>
   518  
   519  <pre>
   520  "日本語"                                 // UTF-8 input text
   521  `日本語`                                 // UTF-8 input text as a raw literal
   522  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   523  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   524  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   525  </pre>
   526  
   527  <p>
   528  If the source code represents a character as two code points, such as
   529  a combining form involving an accent and a letter, the result will be
   530  an error if placed in a rune literal (it is not a single code
   531  point), and will appear as two code points if placed in a string
   532  literal.
   533  </p>
   534  
   535  
   536  <h2 id="Constants">Constants</h2>
   537  
   538  <p>There are <i>boolean constants</i>,
   539  <i>rune constants</i>,
   540  <i>integer constants</i>,
   541  <i>floating-point constants</i>, <i>complex constants</i>,
   542  and <i>string constants</i>. Rune, integer, floating-point,
   543  and complex constants are
   544  collectively called <i>numeric constants</i>.
   545  </p>
   546  
   547  <p>
   548  A constant value is represented by a
   549  <a href="#Rune_literals">rune</a>,
   550  <a href="#Integer_literals">integer</a>,
   551  <a href="#Floating-point_literals">floating-point</a>,
   552  <a href="#Imaginary_literals">imaginary</a>,
   553  or
   554  <a href="#String_literals">string</a> literal,
   555  an identifier denoting a constant,
   556  a <a href="#Constant_expressions">constant expression</a>,
   557  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   558  the result value of some built-in functions such as
   559  <code>unsafe.Sizeof</code> applied to any value,
   560  <code>cap</code> or <code>len</code> applied to
   561  <a href="#Length_and_capacity">some expressions</a>,
   562  <code>real</code> and <code>imag</code> applied to a complex constant
   563  and <code>complex</code> applied to numeric constants.
   564  The boolean truth values are represented by the predeclared constants
   565  <code>true</code> and <code>false</code>. The predeclared identifier
   566  <a href="#Iota">iota</a> denotes an integer constant.
   567  </p>
   568  
   569  <p>
   570  In general, complex constants are a form of
   571  <a href="#Constant_expressions">constant expression</a>
   572  and are discussed in that section.
   573  </p>
   574  
   575  <p>
   576  Numeric constants represent values of arbitrary precision and do not overflow.
   577  </p>
   578  
   579  <p>
   580  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   581  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   582  and certain <a href="#Constant_expressions">constant expressions</a>
   583  containing only untyped constant operands are untyped.
   584  </p>
   585  
   586  <p>
   587  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   588  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   589  <a href="#Variable_declarations">variable declaration</a> or an
   590  <a href="#Assignments">assignment</a> or as an
   591  operand in an <a href="#Expressions">expression</a>.
   592  It is an error if the constant value
   593  cannot be represented as a value of the respective type.
   594  For instance, <code>3.0</code> can be given any integer or any
   595  floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
   596  can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
   597  not <code>int32</code> or <code>string</code>.
   598  </p>
   599  
   600  <p>
   601  An untyped constant has a <i>default type</i> which is the type to which the
   602  constant is implicitly converted in contexts where a typed value is required,
   603  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   604  such as <code>i := 0</code> where there is no explicit type.
   605  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   606  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   607  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   608  complex, or string constant.
   609  </p>
   610  
   611  <p>
   612  There are no constants denoting the IEEE-754 infinity and not-a-number values,
   613  but the <a href="/pkg/math/"><code>math</code> package</a>'s
   614  <a href="/pkg/math/#Inf">Inf</a>,
   615  <a href="/pkg/math/#NaN">NaN</a>,
   616  <a href="/pkg/math/#IsInf">IsInf</a>, and
   617  <a href="/pkg/math/#IsNaN">IsNaN</a>
   618  functions return and test for those values at run time.
   619  </p>
   620  
   621  <p>
   622  Implementation restriction: Although numeric constants have arbitrary
   623  precision in the language, a compiler may implement them using an
   624  internal representation with limited precision.  That said, every
   625  implementation must:
   626  </p>
   627  <ul>
   628  	<li>Represent integer constants with at least 256 bits.</li>
   629  
   630  	<li>Represent floating-point constants, including the parts of
   631  	    a complex constant, with a mantissa of at least 256 bits
   632  	    and a signed exponent of at least 32 bits.</li>
   633  
   634  	<li>Give an error if unable to represent an integer constant
   635  	    precisely.</li>
   636  
   637  	<li>Give an error if unable to represent a floating-point or
   638  	    complex constant due to overflow.</li>
   639  
   640  	<li>Round to the nearest representable constant if unable to
   641  	    represent a floating-point or complex constant due to limits
   642  	    on precision.</li>
   643  </ul>
   644  <p>
   645  These requirements apply both to literal constants and to the result
   646  of evaluating <a href="#Constant_expressions">constant
   647  expressions</a>.
   648  </p>
   649  
   650  <h2 id="Variables">Variables</h2>
   651  
   652  <p>
   653  A variable is a storage location for holding a <i>value</i>.
   654  The set of permissible values is determined by the
   655  variable's <i><a href="#Types">type</a></i>.
   656  </p>
   657  
   658  <p>
   659  A <a href="#Variable_declarations">variable declaration</a>
   660  or, for function parameters and results, the signature
   661  of a <a href="#Function_declarations">function declaration</a>
   662  or <a href="#Function_literals">function literal</a> reserves
   663  storage for a named variable.
   664  
   665  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   666  or taking the address of a <a href="#Composite_literals">composite literal</a>
   667  allocates storage for a variable at run time.
   668  Such an anonymous variable is referred to via a (possibly implicit)
   669  <a href="#Address_operators">pointer indirection</a>.
   670  </p>
   671  
   672  <p>
   673  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   674  and <a href="#Struct_types">struct</a> types have elements and fields that may
   675  be <a href="#Address_operators">addressed</a> individually. Each such element
   676  acts like a variable.
   677  </p>
   678  
   679  <p>
   680  The <i>static type</i> (or just <i>type</i>) of a variable is the	
   681  type given in its declaration, the type provided in the
   682  <code>new</code> call or composite literal, or the type of
   683  an element of a structured variable.
   684  Variables of interface type also have a distinct <i>dynamic type</i>,
   685  which is the concrete type of the value assigned to the variable at run time
   686  (unless the value is the predeclared identifier <code>nil</code>,
   687  which has no type).
   688  The dynamic type may vary during execution but values stored in interface
   689  variables are always <a href="#Assignability">assignable</a>
   690  to the static type of the variable.	
   691  </p>	
   692  
   693  <pre>
   694  var x interface{}  // x is nil and has static type interface{}
   695  var v *T           // v has value nil, static type *T
   696  x = 42             // x has value 42 and dynamic type int
   697  x = v              // x has value (*T)(nil) and dynamic type *T
   698  </pre>
   699  
   700  <p>
   701  A variable's value is retrieved by referring to the variable in an
   702  <a href="#Expressions">expression</a>; it is the most recent value
   703  <a href="#Assignments">assigned</a> to the variable.
   704  If a variable has not yet been assigned a value, its value is the
   705  <a href="#The_zero_value">zero value</a> for its type.
   706  </p>
   707  
   708  
   709  <h2 id="Types">Types</h2>
   710  
   711  <p>
   712  A type determines the set of values and operations specific to values of that
   713  type. Types may be <i>named</i> or <i>unnamed</i>. Named types are specified
   714  by a (possibly <a href="#Qualified_identifiers">qualified</a>)
   715  <a href="#Type_declarations"><i>type name</i></a>; unnamed types are specified
   716  using a <i>type literal</i>, which composes a new type from existing types.
   717  </p>
   718  
   719  <pre class="ebnf">
   720  Type      = TypeName | TypeLit | "(" Type ")" .
   721  TypeName  = identifier | QualifiedIdent .
   722  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   723  	    SliceType | MapType | ChannelType .
   724  </pre>
   725  
   726  <p>
   727  Named instances of the boolean, numeric, and string types are
   728  <a href="#Predeclared_identifiers">predeclared</a>.
   729  <i>Composite types</i>&mdash;array, struct, pointer, function,
   730  interface, slice, map, and channel types&mdash;may be constructed using
   731  type literals.
   732  </p>
   733  
   734  <p>
   735  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   736  is one of the predeclared boolean, numeric, or string types, or a type literal,
   737  the corresponding underlying
   738  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   739  is the underlying type of the type to which <code>T</code> refers in its
   740  <a href="#Type_declarations">type declaration</a>.
   741  </p>
   742  
   743  <pre>
   744     type T1 string
   745     type T2 T1
   746     type T3 []T1
   747     type T4 T3
   748  </pre>
   749  
   750  <p>
   751  The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code>
   752  is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>,
   753  and <code>T4</code> is <code>[]T1</code>.
   754  </p>
   755  
   756  <h3 id="Method_sets">Method sets</h3>
   757  <p>
   758  A type may have a <i>method set</i> associated with it.
   759  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   760  The method set of any other type <code>T</code> consists of all
   761  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   762  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   763  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   764  (that is, it also contains the method set of <code>T</code>).
   765  Further rules apply to structs containing anonymous fields, as described
   766  in the section on <a href="#Struct_types">struct types</a>.
   767  Any other type has an empty method set.
   768  In a method set, each method must have a
   769  <a href="#Uniqueness_of_identifiers">unique</a>
   770  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   771  </p>
   772  
   773  <p>
   774  The method set of a type determines the interfaces that the
   775  type <a href="#Interface_types">implements</a>
   776  and the methods that can be <a href="#Calls">called</a>
   777  using a receiver of that type.
   778  </p>
   779  
   780  <h3 id="Boolean_types">Boolean types</h3>
   781  
   782  <p>
   783  A <i>boolean type</i> represents the set of Boolean truth values
   784  denoted by the predeclared constants <code>true</code>
   785  and <code>false</code>. The predeclared boolean type is <code>bool</code>.
   786  </p>
   787  
   788  <h3 id="Numeric_types">Numeric types</h3>
   789  
   790  <p>
   791  A <i>numeric type</i> represents sets of integer or floating-point values.
   792  The predeclared architecture-independent numeric types are:
   793  </p>
   794  
   795  <pre class="grammar">
   796  uint8       the set of all unsigned  8-bit integers (0 to 255)
   797  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   798  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   799  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   800  
   801  int8        the set of all signed  8-bit integers (-128 to 127)
   802  int16       the set of all signed 16-bit integers (-32768 to 32767)
   803  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   804  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   805  
   806  float32     the set of all IEEE-754 32-bit floating-point numbers
   807  float64     the set of all IEEE-754 64-bit floating-point numbers
   808  
   809  complex64   the set of all complex numbers with float32 real and imaginary parts
   810  complex128  the set of all complex numbers with float64 real and imaginary parts
   811  
   812  byte        alias for uint8
   813  rune        alias for int32
   814  </pre>
   815  
   816  <p>
   817  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   818  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   819  </p>
   820  
   821  <p>
   822  There is also a set of predeclared numeric types with implementation-specific sizes:
   823  </p>
   824  
   825  <pre class="grammar">
   826  uint     either 32 or 64 bits
   827  int      same size as uint
   828  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   829  </pre>
   830  
   831  <p>
   832  To avoid portability issues all numeric types are distinct except
   833  <code>byte</code>, which is an alias for <code>uint8</code>, and
   834  <code>rune</code>, which is an alias for <code>int32</code>.
   835  Conversions
   836  are required when different numeric types are mixed in an expression
   837  or assignment. For instance, <code>int32</code> and <code>int</code>
   838  are not the same type even though they may have the same size on a
   839  particular architecture.
   840  
   841  
   842  <h3 id="String_types">String types</h3>
   843  
   844  <p>
   845  A <i>string type</i> represents the set of string values.
   846  A string value is a (possibly empty) sequence of bytes.
   847  Strings are immutable: once created,
   848  it is impossible to change the contents of a string.
   849  The predeclared string type is <code>string</code>.
   850  </p>
   851  
   852  <p>
   853  The length of a string <code>s</code> (its size in bytes) can be discovered using
   854  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   855  The length is a compile-time constant if the string is a constant.
   856  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   857  0 through <code>len(s)-1</code>.
   858  It is illegal to take the address of such an element; if
   859  <code>s[i]</code> is the <code>i</code>'th byte of a
   860  string, <code>&amp;s[i]</code> is invalid.
   861  </p>
   862  
   863  
   864  <h3 id="Array_types">Array types</h3>
   865  
   866  <p>
   867  An array is a numbered sequence of elements of a single
   868  type, called the element type.
   869  The number of elements is called the length and is never
   870  negative.
   871  </p>
   872  
   873  <pre class="ebnf">
   874  ArrayType   = "[" ArrayLength "]" ElementType .
   875  ArrayLength = Expression .
   876  ElementType = Type .
   877  </pre>
   878  
   879  <p>
   880  The length is part of the array's type; it must evaluate to a
   881  non-negative <a href="#Constants">constant</a> representable by a value
   882  of type <code>int</code>.
   883  The length of array <code>a</code> can be discovered
   884  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   885  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   886  0 through <code>len(a)-1</code>.
   887  Array types are always one-dimensional but may be composed to form
   888  multi-dimensional types.
   889  </p>
   890  
   891  <pre>
   892  [32]byte
   893  [2*N] struct { x, y int32 }
   894  [1000]*float64
   895  [3][5]int
   896  [2][2][2]float64  // same as [2]([2]([2]float64))
   897  </pre>
   898  
   899  <h3 id="Slice_types">Slice types</h3>
   900  
   901  <p>
   902  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   903  provides access to a numbered sequence of elements from that array.
   904  A slice type denotes the set of all slices of arrays of its element type.
   905  The value of an uninitialized slice is <code>nil</code>.
   906  </p>
   907  
   908  <pre class="ebnf">
   909  SliceType = "[" "]" ElementType .
   910  </pre>
   911  
   912  <p>
   913  Like arrays, slices are indexable and have a length.  The length of a
   914  slice <code>s</code> can be discovered by the built-in function
   915  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   916  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   917  0 through <code>len(s)-1</code>.  The slice index of a
   918  given element may be less than the index of the same element in the
   919  underlying array.
   920  </p>
   921  <p>
   922  A slice, once initialized, is always associated with an underlying
   923  array that holds its elements.  A slice therefore shares storage
   924  with its array and with other slices of the same array; by contrast,
   925  distinct arrays always represent distinct storage.
   926  </p>
   927  <p>
   928  The array underlying a slice may extend past the end of the slice.
   929  The <i>capacity</i> is a measure of that extent: it is the sum of
   930  the length of the slice and the length of the array beyond the slice;
   931  a slice of length up to that capacity can be created by
   932  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   933  The capacity of a slice <code>a</code> can be discovered using the
   934  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   935  </p>
   936  
   937  <p>
   938  A new, initialized slice value for a given element type <code>T</code> is
   939  made using the built-in function
   940  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   941  which takes a slice type
   942  and parameters specifying the length and optionally the capacity.
   943  A slice created with <code>make</code> always allocates a new, hidden array
   944  to which the returned slice value refers. That is, executing
   945  </p>
   946  
   947  <pre>
   948  make([]T, length, capacity)
   949  </pre>
   950  
   951  <p>
   952  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   953  it, so these two expressions are equivalent:
   954  </p>
   955  
   956  <pre>
   957  make([]int, 50, 100)
   958  new([100]int)[0:50]
   959  </pre>
   960  
   961  <p>
   962  Like arrays, slices are always one-dimensional but may be composed to construct
   963  higher-dimensional objects.
   964  With arrays of arrays, the inner arrays are, by construction, always the same length;
   965  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   966  Moreover, the inner slices must be initialized individually.
   967  </p>
   968  
   969  <h3 id="Struct_types">Struct types</h3>
   970  
   971  <p>
   972  A struct is a sequence of named elements, called fields, each of which has a
   973  name and a type. Field names may be specified explicitly (IdentifierList) or
   974  implicitly (AnonymousField).
   975  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   976  be <a href="#Uniqueness_of_identifiers">unique</a>.
   977  </p>
   978  
   979  <pre class="ebnf">
   980  StructType     = "struct" "{" { FieldDecl ";" } "}" .
   981  FieldDecl      = (IdentifierList Type | AnonymousField) [ Tag ] .
   982  AnonymousField = [ "*" ] TypeName .
   983  Tag            = string_lit .
   984  </pre>
   985  
   986  <pre>
   987  // An empty struct.
   988  struct {}
   989  
   990  // A struct with 6 fields.
   991  struct {
   992  	x, y int
   993  	u float32
   994  	_ float32  // padding
   995  	A *[]int
   996  	F func()
   997  }
   998  </pre>
   999  
  1000  <p>
  1001  A field declared with a type but no explicit field name is an <i>anonymous field</i>,
  1002  also called an <i>embedded</i> field or an embedding of the type in the struct.
  1003  An embedded type must be specified as
  1004  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
  1005  and <code>T</code> itself may not be
  1006  a pointer type. The unqualified type name acts as the field name.
  1007  </p>
  1008  
  1009  <pre>
  1010  // A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
  1011  struct {
  1012  	T1        // field name is T1
  1013  	*T2       // field name is T2
  1014  	P.T3      // field name is T3
  1015  	*P.T4     // field name is T4
  1016  	x, y int  // field names are x and y
  1017  }
  1018  </pre>
  1019  
  1020  <p>
  1021  The following declaration is illegal because field names must be unique
  1022  in a struct type:
  1023  </p>
  1024  
  1025  <pre>
  1026  struct {
  1027  	T     // conflicts with anonymous field *T and *P.T
  1028  	*T    // conflicts with anonymous field T and *P.T
  1029  	*P.T  // conflicts with anonymous field T and *T
  1030  }
  1031  </pre>
  1032  
  1033  <p>
  1034  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1035  anonymous field in a struct <code>x</code> is called <i>promoted</i> if
  1036  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1037  that field or method <code>f</code>.
  1038  </p>
  1039  
  1040  <p>
  1041  Promoted fields act like ordinary fields
  1042  of a struct except that they cannot be used as field names in
  1043  <a href="#Composite_literals">composite literals</a> of the struct.
  1044  </p>
  1045  
  1046  <p>
  1047  Given a struct type <code>S</code> and a type named <code>T</code>,
  1048  promoted methods are included in the method set of the struct as follows:
  1049  </p>
  1050  <ul>
  1051  	<li>
  1052  	If <code>S</code> contains an anonymous field <code>T</code>,
  1053  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1054  	and <code>*S</code> both include promoted methods with receiver
  1055  	<code>T</code>. The method set of <code>*S</code> also
  1056  	includes promoted methods with receiver <code>*T</code>.
  1057  	</li>
  1058  
  1059  	<li>
  1060  	If <code>S</code> contains an anonymous field <code>*T</code>,
  1061  	the method sets of <code>S</code> and <code>*S</code> both
  1062  	include promoted methods with receiver <code>T</code> or
  1063  	<code>*T</code>.
  1064  	</li>
  1065  </ul>
  1066  
  1067  <p>
  1068  A field declaration may be followed by an optional string literal <i>tag</i>,
  1069  which becomes an attribute for all the fields in the corresponding
  1070  field declaration. The tags are made
  1071  visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1072  and take part in <a href="#Type_identity">type identity</a> for structs
  1073  but are otherwise ignored.
  1074  </p>
  1075  
  1076  <pre>
  1077  // A struct corresponding to the TimeStamp protocol buffer.
  1078  // The tag strings define the protocol buffer field numbers.
  1079  struct {
  1080  	microsec  uint64 "field 1"
  1081  	serverIP6 uint64 "field 2"
  1082  	process   string "field 3"
  1083  }
  1084  </pre>
  1085  
  1086  <h3 id="Pointer_types">Pointer types</h3>
  1087  
  1088  <p>
  1089  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1090  type, called the <i>base type</i> of the pointer.
  1091  The value of an uninitialized pointer is <code>nil</code>.
  1092  </p>
  1093  
  1094  <pre class="ebnf">
  1095  PointerType = "*" BaseType .
  1096  BaseType    = Type .
  1097  </pre>
  1098  
  1099  <pre>
  1100  *Point
  1101  *[4]int
  1102  </pre>
  1103  
  1104  <h3 id="Function_types">Function types</h3>
  1105  
  1106  <p>
  1107  A function type denotes the set of all functions with the same parameter
  1108  and result types. The value of an uninitialized variable of function type
  1109  is <code>nil</code>.
  1110  </p>
  1111  
  1112  <pre class="ebnf">
  1113  FunctionType   = "func" Signature .
  1114  Signature      = Parameters [ Result ] .
  1115  Result         = Parameters | Type .
  1116  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1117  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1118  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1119  </pre>
  1120  
  1121  <p>
  1122  Within a list of parameters or results, the names (IdentifierList)
  1123  must either all be present or all be absent. If present, each name
  1124  stands for one item (parameter or result) of the specified type and
  1125  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1126  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1127  If absent, each type stands for one item of that type.
  1128  Parameter and result
  1129  lists are always parenthesized except that if there is exactly
  1130  one unnamed result it may be written as an unparenthesized type.
  1131  </p>
  1132  
  1133  <p>
  1134  The final parameter in a function signature may have
  1135  a type prefixed with <code>...</code>.
  1136  A function with such a parameter is called <i>variadic</i> and
  1137  may be invoked with zero or more arguments for that parameter.
  1138  </p>
  1139  
  1140  <pre>
  1141  func()
  1142  func(x int) int
  1143  func(a, _ int, z float32) bool
  1144  func(a, b int, z float32) (bool)
  1145  func(prefix string, values ...int)
  1146  func(a, b int, z float64, opt ...interface{}) (success bool)
  1147  func(int, int, float64) (float64, *[]int)
  1148  func(n int) func(p *T)
  1149  </pre>
  1150  
  1151  
  1152  <h3 id="Interface_types">Interface types</h3>
  1153  
  1154  <p>
  1155  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1156  A variable of interface type can store a value of any type with a method set
  1157  that is any superset of the interface. Such a type is said to
  1158  <i>implement the interface</i>.
  1159  The value of an uninitialized variable of interface type is <code>nil</code>.
  1160  </p>
  1161  
  1162  <pre class="ebnf">
  1163  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1164  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1165  MethodName         = identifier .
  1166  InterfaceTypeName  = TypeName .
  1167  </pre>
  1168  
  1169  <p>
  1170  As with all method sets, in an interface type, each method must have a
  1171  <a href="#Uniqueness_of_identifiers">unique</a>
  1172  non-<a href="#Blank_identifier">blank</a> name.
  1173  </p>
  1174  
  1175  <pre>
  1176  // A simple File interface
  1177  interface {
  1178  	Read(b Buffer) bool
  1179  	Write(b Buffer) bool
  1180  	Close()
  1181  }
  1182  </pre>
  1183  
  1184  <p>
  1185  More than one type may implement an interface.
  1186  For instance, if two types <code>S1</code> and <code>S2</code>
  1187  have the method set
  1188  </p>
  1189  
  1190  <pre>
  1191  func (p T) Read(b Buffer) bool { return … }
  1192  func (p T) Write(b Buffer) bool { return … }
  1193  func (p T) Close() { … }
  1194  </pre>
  1195  
  1196  <p>
  1197  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1198  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1199  <code>S2</code>, regardless of what other methods
  1200  <code>S1</code> and <code>S2</code> may have or share.
  1201  </p>
  1202  
  1203  <p>
  1204  A type implements any interface comprising any subset of its methods
  1205  and may therefore implement several distinct interfaces. For
  1206  instance, all types implement the <i>empty interface</i>:
  1207  </p>
  1208  
  1209  <pre>
  1210  interface{}
  1211  </pre>
  1212  
  1213  <p>
  1214  Similarly, consider this interface specification,
  1215  which appears within a <a href="#Type_declarations">type declaration</a>
  1216  to define an interface called <code>Locker</code>:
  1217  </p>
  1218  
  1219  <pre>
  1220  type Locker interface {
  1221  	Lock()
  1222  	Unlock()
  1223  }
  1224  </pre>
  1225  
  1226  <p>
  1227  If <code>S1</code> and <code>S2</code> also implement
  1228  </p>
  1229  
  1230  <pre>
  1231  func (p T) Lock() { … }
  1232  func (p T) Unlock() { … }
  1233  </pre>
  1234  
  1235  <p>
  1236  they implement the <code>Locker</code> interface as well
  1237  as the <code>File</code> interface.
  1238  </p>
  1239  
  1240  <p>
  1241  An interface <code>T</code> may use a (possibly qualified) interface type
  1242  name <code>E</code> in place of a method specification. This is called
  1243  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1244  all (exported and non-exported) methods of <code>E</code> to the interface
  1245  <code>T</code>.
  1246  </p>
  1247  
  1248  <pre>
  1249  type ReadWriter interface {
  1250  	Read(b Buffer) bool
  1251  	Write(b Buffer) bool
  1252  }
  1253  
  1254  type File interface {
  1255  	ReadWriter  // same as adding the methods of ReadWriter
  1256  	Locker      // same as adding the methods of Locker
  1257  	Close()
  1258  }
  1259  
  1260  type LockedFile interface {
  1261  	Locker
  1262  	File        // illegal: Lock, Unlock not unique
  1263  	Lock()      // illegal: Lock not unique
  1264  }
  1265  </pre>
  1266  
  1267  <p>
  1268  An interface type <code>T</code> may not embed itself
  1269  or any interface type that embeds <code>T</code>, recursively.
  1270  </p>
  1271  
  1272  <pre>
  1273  // illegal: Bad cannot embed itself
  1274  type Bad interface {
  1275  	Bad
  1276  }
  1277  
  1278  // illegal: Bad1 cannot embed itself using Bad2
  1279  type Bad1 interface {
  1280  	Bad2
  1281  }
  1282  type Bad2 interface {
  1283  	Bad1
  1284  }
  1285  </pre>
  1286  
  1287  <h3 id="Map_types">Map types</h3>
  1288  
  1289  <p>
  1290  A map is an unordered group of elements of one type, called the
  1291  element type, indexed by a set of unique <i>keys</i> of another type,
  1292  called the key type.
  1293  The value of an uninitialized map is <code>nil</code>.
  1294  </p>
  1295  
  1296  <pre class="ebnf">
  1297  MapType     = "map" "[" KeyType "]" ElementType .
  1298  KeyType     = Type .
  1299  </pre>
  1300  
  1301  <p>
  1302  The <a href="#Comparison_operators">comparison operators</a>
  1303  <code>==</code> and <code>!=</code> must be fully defined
  1304  for operands of the key type; thus the key type must not be a function, map, or
  1305  slice.
  1306  If the key type is an interface type, these
  1307  comparison operators must be defined for the dynamic key values;
  1308  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1309  
  1310  </p>
  1311  
  1312  <pre>
  1313  map[string]int
  1314  map[*T]struct{ x, y float64 }
  1315  map[string]interface{}
  1316  </pre>
  1317  
  1318  <p>
  1319  The number of map elements is called its length.
  1320  For a map <code>m</code>, it can be discovered using the
  1321  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1322  and may change during execution. Elements may be added during execution
  1323  using <a href="#Assignments">assignments</a> and retrieved with
  1324  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1325  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1326  </p>
  1327  <p>
  1328  A new, empty map value is made using the built-in
  1329  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1330  which takes the map type and an optional capacity hint as arguments:
  1331  </p>
  1332  
  1333  <pre>
  1334  make(map[string]int)
  1335  make(map[string]int, 100)
  1336  </pre>
  1337  
  1338  <p>
  1339  The initial capacity does not bound its size:
  1340  maps grow to accommodate the number of items
  1341  stored in them, with the exception of <code>nil</code> maps.
  1342  A <code>nil</code> map is equivalent to an empty map except that no elements
  1343  may be added.
  1344  
  1345  <h3 id="Channel_types">Channel types</h3>
  1346  
  1347  <p>
  1348  A channel provides a mechanism for
  1349  <a href="#Go_statements">concurrently executing functions</a>
  1350  to communicate by
  1351  <a href="#Send_statements">sending</a> and
  1352  <a href="#Receive_operator">receiving</a>
  1353  values of a specified element type.
  1354  The value of an uninitialized channel is <code>nil</code>.
  1355  </p>
  1356  
  1357  <pre class="ebnf">
  1358  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1359  </pre>
  1360  
  1361  <p>
  1362  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1363  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1364  <i>bidirectional</i>.
  1365  A channel may be constrained only to send or only to receive by
  1366  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1367  </p>
  1368  
  1369  <pre>
  1370  chan T          // can be used to send and receive values of type T
  1371  chan&lt;- float64  // can only be used to send float64s
  1372  &lt;-chan int      // can only be used to receive ints
  1373  </pre>
  1374  
  1375  <p>
  1376  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1377  possible:
  1378  </p>
  1379  
  1380  <pre>
  1381  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1382  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1383  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1384  chan (&lt;-chan int)
  1385  </pre>
  1386  
  1387  <p>
  1388  A new, initialized channel
  1389  value can be made using the built-in function
  1390  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1391  which takes the channel type and an optional <i>capacity</i> as arguments:
  1392  </p>
  1393  
  1394  <pre>
  1395  make(chan int, 100)
  1396  </pre>
  1397  
  1398  <p>
  1399  The capacity, in number of elements, sets the size of the buffer in the channel.
  1400  If the capacity is zero or absent, the channel is unbuffered and communication
  1401  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1402  is buffered and communication succeeds without blocking if the buffer
  1403  is not full (sends) or not empty (receives).
  1404  A <code>nil</code> channel is never ready for communication.
  1405  </p>
  1406  
  1407  <p>
  1408  A channel may be closed with the built-in function
  1409  <a href="#Close"><code>close</code></a>.
  1410  The multi-valued assignment form of the
  1411  <a href="#Receive_operator">receive operator</a>
  1412  reports whether a received value was sent before
  1413  the channel was closed.
  1414  </p>
  1415  
  1416  <p>
  1417  A single channel may be used in
  1418  <a href="#Send_statements">send statements</a>,
  1419  <a href="#Receive_operator">receive operations</a>,
  1420  and calls to the built-in functions
  1421  <a href="#Length_and_capacity"><code>cap</code></a> and
  1422  <a href="#Length_and_capacity"><code>len</code></a>
  1423  by any number of goroutines without further synchronization.
  1424  Channels act as first-in-first-out queues.
  1425  For example, if one goroutine sends values on a channel
  1426  and a second goroutine receives them, the values are
  1427  received in the order sent.
  1428  </p>
  1429  
  1430  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1431  
  1432  <h3 id="Type_identity">Type identity</h3>
  1433  
  1434  <p>
  1435  Two types are either <i>identical</i> or <i>different</i>.
  1436  </p>
  1437  
  1438  <p>
  1439  Two <a href="#Types">named types</a> are identical if their type names originate in the same
  1440  <a href="#Type_declarations">TypeSpec</a>.
  1441  A named and an <a href="#Types">unnamed type</a> are always different. Two unnamed types are identical
  1442  if the corresponding type literals are identical, that is, if they have the same
  1443  literal structure and corresponding components have identical types. In detail:
  1444  </p>
  1445  
  1446  <ul>
  1447  	<li>Two array types are identical if they have identical element types and
  1448  	    the same array length.</li>
  1449  
  1450  	<li>Two slice types are identical if they have identical element types.</li>
  1451  
  1452  	<li>Two struct types are identical if they have the same sequence of fields,
  1453  	    and if corresponding fields have the same names, and identical types,
  1454  	    and identical tags.
  1455  	    Two anonymous fields are considered to have the same name. Lower-case field
  1456  	    names from different packages are always different.</li>
  1457  
  1458  	<li>Two pointer types are identical if they have identical base types.</li>
  1459  
  1460  	<li>Two function types are identical if they have the same number of parameters
  1461  	    and result values, corresponding parameter and result types are
  1462  	    identical, and either both functions are variadic or neither is.
  1463  	    Parameter and result names are not required to match.</li>
  1464  
  1465  	<li>Two interface types are identical if they have the same set of methods
  1466  	    with the same names and identical function types. Lower-case method names from
  1467  	    different packages are always different. The order of the methods is irrelevant.</li>
  1468  
  1469  	<li>Two map types are identical if they have identical key and value types.</li>
  1470  
  1471  	<li>Two channel types are identical if they have identical value types and
  1472  	    the same direction.</li>
  1473  </ul>
  1474  
  1475  <p>
  1476  Given the declarations
  1477  </p>
  1478  
  1479  <pre>
  1480  type (
  1481  	T0 []string
  1482  	T1 []string
  1483  	T2 struct{ a, b int }
  1484  	T3 struct{ a, c int }
  1485  	T4 func(int, float64) *T0
  1486  	T5 func(x int, y float64) *[]string
  1487  )
  1488  </pre>
  1489  
  1490  <p>
  1491  these types are identical:
  1492  </p>
  1493  
  1494  <pre>
  1495  T0 and T0
  1496  []int and []int
  1497  struct{ a, b *T5 } and struct{ a, b *T5 }
  1498  func(x int, y float64) *[]string and func(int, float64) (result *[]string)
  1499  </pre>
  1500  
  1501  <p>
  1502  <code>T0</code> and <code>T1</code> are different because they are named types
  1503  with distinct declarations; <code>func(int, float64) *T0</code> and
  1504  <code>func(x int, y float64) *[]string</code> are different because <code>T0</code>
  1505  is different from <code>[]string</code>.
  1506  </p>
  1507  
  1508  
  1509  <h3 id="Assignability">Assignability</h3>
  1510  
  1511  <p>
  1512  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1513  ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
  1514  </p>
  1515  
  1516  <ul>
  1517  <li>
  1518  <code>x</code>'s type is identical to <code>T</code>.
  1519  </li>
  1520  <li>
  1521  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1522  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1523  or <code>T</code> is not a <a href="#Types">named type</a>.
  1524  </li>
  1525  <li>
  1526  <code>T</code> is an interface type and
  1527  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1528  </li>
  1529  <li>
  1530  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1531  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1532  and at least one of <code>V</code> or <code>T</code> is not a named type.
  1533  </li>
  1534  <li>
  1535  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1536  is a pointer, function, slice, map, channel, or interface type.
  1537  </li>
  1538  <li>
  1539  <code>x</code> is an untyped <a href="#Constants">constant</a> representable
  1540  by a value of type <code>T</code>.
  1541  </li>
  1542  </ul>
  1543  
  1544  
  1545  <h2 id="Blocks">Blocks</h2>
  1546  
  1547  <p>
  1548  A <i>block</i> is a possibly empty sequence of declarations and statements
  1549  within matching brace brackets.
  1550  </p>
  1551  
  1552  <pre class="ebnf">
  1553  Block = "{" StatementList "}" .
  1554  StatementList = { Statement ";" } .
  1555  </pre>
  1556  
  1557  <p>
  1558  In addition to explicit blocks in the source code, there are implicit blocks:
  1559  </p>
  1560  
  1561  <ol>
  1562  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1563  
  1564  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1565  	    Go source text for that package.</li>
  1566  
  1567  	<li>Each file has a <i>file block</i> containing all Go source text
  1568  	    in that file.</li>
  1569  
  1570  	<li>Each <a href="#If_statements">"if"</a>,
  1571  	    <a href="#For_statements">"for"</a>, and
  1572  	    <a href="#Switch_statements">"switch"</a>
  1573  	    statement is considered to be in its own implicit block.</li>
  1574  
  1575  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1576  	    or <a href="#Select_statements">"select"</a> statement
  1577  	    acts as an implicit block.</li>
  1578  </ol>
  1579  
  1580  <p>
  1581  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1582  </p>
  1583  
  1584  
  1585  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1586  
  1587  <p>
  1588  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1589  <a href="#Constant_declarations">constant</a>,
  1590  <a href="#Type_declarations">type</a>,
  1591  <a href="#Variable_declarations">variable</a>,
  1592  <a href="#Function_declarations">function</a>,
  1593  <a href="#Labeled_statements">label</a>, or
  1594  <a href="#Import_declarations">package</a>.
  1595  Every identifier in a program must be declared.
  1596  No identifier may be declared twice in the same block, and
  1597  no identifier may be declared in both the file and package block.
  1598  </p>
  1599  
  1600  <p>
  1601  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1602  in a declaration, but it does not introduce a binding and thus is not declared.
  1603  In the package block, the identifier <code>init</code> may only be used for
  1604  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1605  and like the blank identifier it does not introduce a new binding.
  1606  </p>
  1607  
  1608  <pre class="ebnf">
  1609  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1610  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1611  </pre>
  1612  
  1613  <p>
  1614  The <i>scope</i> of a declared identifier is the extent of source text in which
  1615  the identifier denotes the specified constant, type, variable, function, label, or package.
  1616  </p>
  1617  
  1618  <p>
  1619  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1620  </p>
  1621  
  1622  <ol>
  1623  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1624  
  1625  	<li>The scope of an identifier denoting a constant, type, variable,
  1626  	    or function (but not method) declared at top level (outside any
  1627  	    function) is the package block.</li>
  1628  
  1629  	<li>The scope of the package name of an imported package is the file block
  1630  	    of the file containing the import declaration.</li>
  1631  
  1632  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1633  	    or result variable is the function body.</li>
  1634  
  1635  	<li>The scope of a constant or variable identifier declared
  1636  	    inside a function begins at the end of the ConstSpec or VarSpec
  1637  	    (ShortVarDecl for short variable declarations)
  1638  	    and ends at the end of the innermost containing block.</li>
  1639  
  1640  	<li>The scope of a type identifier declared inside a function
  1641  	    begins at the identifier in the TypeSpec
  1642  	    and ends at the end of the innermost containing block.</li>
  1643  </ol>
  1644  
  1645  <p>
  1646  An identifier declared in a block may be redeclared in an inner block.
  1647  While the identifier of the inner declaration is in scope, it denotes
  1648  the entity declared by the inner declaration.
  1649  </p>
  1650  
  1651  <p>
  1652  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1653  does not appear in any scope. Its purpose is to identify the files belonging
  1654  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1655  declarations.
  1656  </p>
  1657  
  1658  
  1659  <h3 id="Label_scopes">Label scopes</h3>
  1660  
  1661  <p>
  1662  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1663  used in the <a href="#Break_statements">"break"</a>,
  1664  <a href="#Continue_statements">"continue"</a>, and
  1665  <a href="#Goto_statements">"goto"</a> statements.
  1666  It is illegal to define a label that is never used.
  1667  In contrast to other identifiers, labels are not block scoped and do
  1668  not conflict with identifiers that are not labels. The scope of a label
  1669  is the body of the function in which it is declared and excludes
  1670  the body of any nested function.
  1671  </p>
  1672  
  1673  
  1674  <h3 id="Blank_identifier">Blank identifier</h3>
  1675  
  1676  <p>
  1677  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1678  It serves as an anonymous placeholder instead of a regular (non-blank)
  1679  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1680  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1681  </p>
  1682  
  1683  
  1684  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1685  
  1686  <p>
  1687  The following identifiers are implicitly declared in the
  1688  <a href="#Blocks">universe block</a>:
  1689  </p>
  1690  <pre class="grammar">
  1691  Types:
  1692  	bool byte complex64 complex128 error float32 float64
  1693  	int int8 int16 int32 int64 rune string
  1694  	uint uint8 uint16 uint32 uint64 uintptr
  1695  
  1696  Constants:
  1697  	true false iota
  1698  
  1699  Zero value:
  1700  	nil
  1701  
  1702  Functions:
  1703  	append cap close complex copy delete imag len
  1704  	make new panic print println real recover
  1705  </pre>
  1706  
  1707  
  1708  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1709  
  1710  <p>
  1711  An identifier may be <i>exported</i> to permit access to it from another package.
  1712  An identifier is exported if both:
  1713  </p>
  1714  <ol>
  1715  	<li>the first character of the identifier's name is a Unicode upper case
  1716  	letter (Unicode class "Lu"); and</li>
  1717  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1718  	or it is a <a href="#Struct_types">field name</a> or
  1719  	<a href="#MethodName">method name</a>.</li>
  1720  </ol>
  1721  <p>
  1722  All other identifiers are not exported.
  1723  </p>
  1724  
  1725  
  1726  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1727  
  1728  <p>
  1729  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1730  <i>different</i> from every other in the set.
  1731  Two identifiers are different if they are spelled differently, or if they
  1732  appear in different <a href="#Packages">packages</a> and are not
  1733  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1734  </p>
  1735  
  1736  <h3 id="Constant_declarations">Constant declarations</h3>
  1737  
  1738  <p>
  1739  A constant declaration binds a list of identifiers (the names of
  1740  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1741  The number of identifiers must be equal
  1742  to the number of expressions, and the <i>n</i>th identifier on
  1743  the left is bound to the value of the <i>n</i>th expression on the
  1744  right.
  1745  </p>
  1746  
  1747  <pre class="ebnf">
  1748  ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
  1749  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1750  
  1751  IdentifierList = identifier { "," identifier } .
  1752  ExpressionList = Expression { "," Expression } .
  1753  </pre>
  1754  
  1755  <p>
  1756  If the type is present, all constants take the type specified, and
  1757  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1758  If the type is omitted, the constants take the
  1759  individual types of the corresponding expressions.
  1760  If the expression values are untyped <a href="#Constants">constants</a>,
  1761  the declared constants remain untyped and the constant identifiers
  1762  denote the constant values. For instance, if the expression is a
  1763  floating-point literal, the constant identifier denotes a floating-point
  1764  constant, even if the literal's fractional part is zero.
  1765  </p>
  1766  
  1767  <pre>
  1768  const Pi float64 = 3.14159265358979323846
  1769  const zero = 0.0         // untyped floating-point constant
  1770  const (
  1771  	size int64 = 1024
  1772  	eof        = -1  // untyped integer constant
  1773  )
  1774  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1775  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1776  </pre>
  1777  
  1778  <p>
  1779  Within a parenthesized <code>const</code> declaration list the
  1780  expression list may be omitted from any but the first declaration.
  1781  Such an empty list is equivalent to the textual substitution of the
  1782  first preceding non-empty expression list and its type if any.
  1783  Omitting the list of expressions is therefore equivalent to
  1784  repeating the previous list.  The number of identifiers must be equal
  1785  to the number of expressions in the previous list.
  1786  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1787  this mechanism permits light-weight declaration of sequential values:
  1788  </p>
  1789  
  1790  <pre>
  1791  const (
  1792  	Sunday = iota
  1793  	Monday
  1794  	Tuesday
  1795  	Wednesday
  1796  	Thursday
  1797  	Friday
  1798  	Partyday
  1799  	numberOfDays  // this constant is not exported
  1800  )
  1801  </pre>
  1802  
  1803  
  1804  <h3 id="Iota">Iota</h3>
  1805  
  1806  <p>
  1807  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1808  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1809  constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
  1810  appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
  1811  It can be used to construct a set of related constants:
  1812  </p>
  1813  
  1814  <pre>
  1815  const (  // iota is reset to 0
  1816  	c0 = iota  // c0 == 0
  1817  	c1 = iota  // c1 == 1
  1818  	c2 = iota  // c2 == 2
  1819  )
  1820  
  1821  const (
  1822  	a = 1 &lt;&lt; iota  // a == 1 (iota has been reset)
  1823  	b = 1 &lt;&lt; iota  // b == 2
  1824  	c = 1 &lt;&lt; iota  // c == 4
  1825  )
  1826  
  1827  const (
  1828  	u         = iota * 42  // u == 0     (untyped integer constant)
  1829  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1830  	w         = iota * 42  // w == 84    (untyped integer constant)
  1831  )
  1832  
  1833  const x = iota  // x == 0 (iota has been reset)
  1834  const y = iota  // y == 0 (iota has been reset)
  1835  </pre>
  1836  
  1837  <p>
  1838  Within an ExpressionList, the value of each <code>iota</code> is the same because
  1839  it is only incremented after each ConstSpec:
  1840  </p>
  1841  
  1842  <pre>
  1843  const (
  1844  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
  1845  	bit1, mask1                           // bit1 == 2, mask1 == 1
  1846  	_, _                                  // skips iota == 2
  1847  	bit3, mask3                           // bit3 == 8, mask3 == 7
  1848  )
  1849  </pre>
  1850  
  1851  <p>
  1852  This last example exploits the implicit repetition of the
  1853  last non-empty expression list.
  1854  </p>
  1855  
  1856  
  1857  <h3 id="Type_declarations">Type declarations</h3>
  1858  
  1859  <p>
  1860  A type declaration binds an identifier, the <i>type name</i>, to a new type
  1861  that has the same <a href="#Types">underlying type</a> as an existing type,
  1862  and operations defined for the existing type are also defined for the new type.
  1863  The new type is <a href="#Type_identity">different</a> from the existing type.
  1864  </p>
  1865  
  1866  <pre class="ebnf">
  1867  TypeDecl     = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
  1868  TypeSpec     = identifier Type .
  1869  </pre>
  1870  
  1871  <pre>
  1872  type IntArray [16]int
  1873  
  1874  type (
  1875  	Point struct{ x, y float64 }
  1876  	Polar Point
  1877  )
  1878  
  1879  type TreeNode struct {
  1880  	left, right *TreeNode
  1881  	value *Comparable
  1882  }
  1883  
  1884  type Block interface {
  1885  	BlockSize() int
  1886  	Encrypt(src, dst []byte)
  1887  	Decrypt(src, dst []byte)
  1888  }
  1889  </pre>
  1890  
  1891  <p>
  1892  The declared type does not inherit any <a href="#Method_declarations">methods</a>
  1893  bound to the existing type, but the <a href="#Method_sets">method set</a>
  1894  of an interface type or of elements of a composite type remains unchanged:
  1895  </p>
  1896  
  1897  <pre>
  1898  // A Mutex is a data type with two methods, Lock and Unlock.
  1899  type Mutex struct         { /* Mutex fields */ }
  1900  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1901  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1902  
  1903  // NewMutex has the same composition as Mutex but its method set is empty.
  1904  type NewMutex Mutex
  1905  
  1906  // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
  1907  // but the method set of PtrMutex is empty.
  1908  type PtrMutex *Mutex
  1909  
  1910  // The method set of *PrintableMutex contains the methods
  1911  // Lock and Unlock bound to its anonymous field Mutex.
  1912  type PrintableMutex struct {
  1913  	Mutex
  1914  }
  1915  
  1916  // MyBlock is an interface type that has the same method set as Block.
  1917  type MyBlock Block
  1918  </pre>
  1919  
  1920  <p>
  1921  A type declaration may be used to define a different boolean, numeric, or string
  1922  type and attach methods to it:
  1923  </p>
  1924  
  1925  <pre>
  1926  type TimeZone int
  1927  
  1928  const (
  1929  	EST TimeZone = -(5 + iota)
  1930  	CST
  1931  	MST
  1932  	PST
  1933  )
  1934  
  1935  func (tz TimeZone) String() string {
  1936  	return fmt.Sprintf("GMT+%dh", tz)
  1937  }
  1938  </pre>
  1939  
  1940  
  1941  <h3 id="Variable_declarations">Variable declarations</h3>
  1942  
  1943  <p>
  1944  A variable declaration creates one or more variables, binds corresponding
  1945  identifiers to them, and gives each a type and an initial value.
  1946  </p>
  1947  
  1948  <pre class="ebnf">
  1949  VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
  1950  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  1951  </pre>
  1952  
  1953  <pre>
  1954  var i int
  1955  var U, V, W float64
  1956  var k = 0
  1957  var x, y float32 = -1, -2
  1958  var (
  1959  	i       int
  1960  	u, v, s = 2.0, 3.0, "bar"
  1961  )
  1962  var re, im = complexSqrt(-1)
  1963  var _, found = entries[name]  // map lookup; only interested in "found"
  1964  </pre>
  1965  
  1966  <p>
  1967  If a list of expressions is given, the variables are initialized
  1968  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  1969  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  1970  </p>
  1971  
  1972  <p>
  1973  If a type is present, each variable is given that type.
  1974  Otherwise, each variable is given the type of the corresponding
  1975  initialization value in the assignment.
  1976  If that value is an untyped constant, it is first
  1977  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  1978  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  1979  The predeclared value <code>nil</code> cannot be used to initialize a variable
  1980  with no explicit type.
  1981  </p>
  1982  
  1983  <pre>
  1984  var d = math.Sin(0.5)  // d is float64
  1985  var i = 42             // i is int
  1986  var t, ok = x.(T)      // t is T, ok is bool
  1987  var n = nil            // illegal
  1988  </pre>
  1989  
  1990  <p>
  1991  Implementation restriction: A compiler may make it illegal to declare a variable
  1992  inside a <a href="#Function_declarations">function body</a> if the variable is
  1993  never used.
  1994  </p>
  1995  
  1996  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  1997  
  1998  <p>
  1999  A <i>short variable declaration</i> uses the syntax:
  2000  </p>
  2001  
  2002  <pre class="ebnf">
  2003  ShortVarDecl = IdentifierList ":=" ExpressionList .
  2004  </pre>
  2005  
  2006  <p>
  2007  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  2008  with initializer expressions but no types:
  2009  </p>
  2010  
  2011  <pre class="grammar">
  2012  "var" IdentifierList = ExpressionList .
  2013  </pre>
  2014  
  2015  <pre>
  2016  i, j := 0, 10
  2017  f := func() int { return 7 }
  2018  ch := make(chan int)
  2019  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2020  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2021  </pre>
  2022  
  2023  <p>
  2024  Unlike regular variable declarations, a short variable declaration may redeclare variables provided they
  2025  were originally declared earlier in the same block with the same type, and at
  2026  least one of the non-<a href="#Blank_identifier">blank</a> variables is new.  As a consequence, redeclaration
  2027  can only appear in a multi-variable short declaration.
  2028  Redeclaration does not introduce a new
  2029  variable; it just assigns a new value to the original.
  2030  </p>
  2031  
  2032  <pre>
  2033  field1, offset := nextField(str, 0)
  2034  field2, offset := nextField(str, offset)  // redeclares offset
  2035  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2036  </pre>
  2037  
  2038  <p>
  2039  Short variable declarations may appear only inside functions.
  2040  In some contexts such as the initializers for
  2041  <a href="#If_statements">"if"</a>,
  2042  <a href="#For_statements">"for"</a>, or
  2043  <a href="#Switch_statements">"switch"</a> statements,
  2044  they can be used to declare local temporary variables.
  2045  </p>
  2046  
  2047  <h3 id="Function_declarations">Function declarations</h3>
  2048  
  2049  <p>
  2050  A function declaration binds an identifier, the <i>function name</i>,
  2051  to a function.
  2052  </p>
  2053  
  2054  <pre class="ebnf">
  2055  FunctionDecl = "func" FunctionName ( Function | Signature ) .
  2056  FunctionName = identifier .
  2057  Function     = Signature FunctionBody .
  2058  FunctionBody = Block .
  2059  </pre>
  2060  
  2061  <p>
  2062  If the function's <a href="#Function_types">signature</a> declares
  2063  result parameters, the function body's statement list must end in
  2064  a <a href="#Terminating_statements">terminating statement</a>.
  2065  </p>
  2066  
  2067  <pre>
  2068  func findMarker(c &lt;-chan int) int {
  2069  	for i := range c {
  2070  		if x := &lt;-c; isMarker(x) {
  2071  			return x
  2072  		}
  2073  	}
  2074  	// invalid: missing return statement.
  2075  }
  2076  </pre>
  2077  
  2078  <p>
  2079  A function declaration may omit the body. Such a declaration provides the
  2080  signature for a function implemented outside Go, such as an assembly routine.
  2081  </p>
  2082  
  2083  <pre>
  2084  func min(x int, y int) int {
  2085  	if x &lt; y {
  2086  		return x
  2087  	}
  2088  	return y
  2089  }
  2090  
  2091  func flushICache(begin, end uintptr)  // implemented externally
  2092  </pre>
  2093  
  2094  <h3 id="Method_declarations">Method declarations</h3>
  2095  
  2096  <p>
  2097  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2098  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2099  and associates the method with the receiver's <i>base type</i>.
  2100  </p>
  2101  
  2102  <pre class="ebnf">
  2103  MethodDecl   = "func" Receiver MethodName ( Function | Signature ) .
  2104  Receiver     = Parameters .
  2105  </pre>
  2106  
  2107  <p>
  2108  The receiver is specified via an extra parameter section preceeding the method
  2109  name. That parameter section must declare a single parameter, the receiver.
  2110  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2111  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2112  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2113  it must be declared in the same package as the method.
  2114  The method is said to be <i>bound</i> to the base type and the method name
  2115  is visible only within selectors for that type.
  2116  </p>
  2117  
  2118  <p>
  2119  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2120  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2121  If the receiver's value is not referenced inside the body of the method,
  2122  its identifier may be omitted in the declaration. The same applies in
  2123  general to parameters of functions and methods.
  2124  </p>
  2125  
  2126  <p>
  2127  For a base type, the non-blank names of methods bound to it must be unique.
  2128  If the base type is a <a href="#Struct_types">struct type</a>,
  2129  the non-blank method and field names must be distinct.
  2130  </p>
  2131  
  2132  <p>
  2133  Given type <code>Point</code>, the declarations
  2134  </p>
  2135  
  2136  <pre>
  2137  func (p *Point) Length() float64 {
  2138  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2139  }
  2140  
  2141  func (p *Point) Scale(factor float64) {
  2142  	p.x *= factor
  2143  	p.y *= factor
  2144  }
  2145  </pre>
  2146  
  2147  <p>
  2148  bind the methods <code>Length</code> and <code>Scale</code>,
  2149  with receiver type <code>*Point</code>,
  2150  to the base type <code>Point</code>.
  2151  </p>
  2152  
  2153  <p>
  2154  The type of a method is the type of a function with the receiver as first
  2155  argument.  For instance, the method <code>Scale</code> has type
  2156  </p>
  2157  
  2158  <pre>
  2159  func(p *Point, factor float64)
  2160  </pre>
  2161  
  2162  <p>
  2163  However, a function declared this way is not a method.
  2164  </p>
  2165  
  2166  
  2167  <h2 id="Expressions">Expressions</h2>
  2168  
  2169  <p>
  2170  An expression specifies the computation of a value by applying
  2171  operators and functions to operands.
  2172  </p>
  2173  
  2174  <h3 id="Operands">Operands</h3>
  2175  
  2176  <p>
  2177  Operands denote the elementary values in an expression. An operand may be a
  2178  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2179  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2180  <a href="#Constant_declarations">constant</a>,
  2181  <a href="#Variable_declarations">variable</a>, or
  2182  <a href="#Function_declarations">function</a>,
  2183  a <a href="#Method_expressions">method expression</a> yielding a function,
  2184  or a parenthesized expression.
  2185  </p>
  2186  
  2187  <p>
  2188  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2189  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2190  </p>
  2191  
  2192  <pre class="ebnf">
  2193  Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
  2194  Literal     = BasicLit | CompositeLit | FunctionLit .
  2195  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2196  OperandName = identifier | QualifiedIdent.
  2197  </pre>
  2198  
  2199  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2200  
  2201  <p>
  2202  A qualified identifier is an identifier qualified with a package name prefix.
  2203  Both the package name and the identifier must not be
  2204  <a href="#Blank_identifier">blank</a>.
  2205  </p>
  2206  
  2207  <pre class="ebnf">
  2208  QualifiedIdent = PackageName "." identifier .
  2209  </pre>
  2210  
  2211  <p>
  2212  A qualified identifier accesses an identifier in a different package, which
  2213  must be <a href="#Import_declarations">imported</a>.
  2214  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2215  declared in the <a href="#Blocks">package block</a> of that package.
  2216  </p>
  2217  
  2218  <pre>
  2219  math.Sin	// denotes the Sin function in package math
  2220  </pre>
  2221  
  2222  <h3 id="Composite_literals">Composite literals</h3>
  2223  
  2224  <p>
  2225  Composite literals construct values for structs, arrays, slices, and maps
  2226  and create a new value each time they are evaluated.
  2227  They consist of the type of the value
  2228  followed by a brace-bound list of composite elements. An element may be
  2229  a single expression or a key-value pair.
  2230  </p>
  2231  
  2232  <pre class="ebnf">
  2233  CompositeLit  = LiteralType LiteralValue .
  2234  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2235                  SliceType | MapType | TypeName .
  2236  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2237  ElementList   = Element { "," Element } .
  2238  Element       = [ Key ":" ] Value .
  2239  Key           = FieldName | Expression | LiteralValue .
  2240  FieldName     = identifier .
  2241  Value         = Expression | LiteralValue .
  2242  </pre>
  2243  
  2244  <p>
  2245  The LiteralType must be a struct, array, slice, or map type
  2246  (the grammar enforces this constraint except when the type is given
  2247  as a TypeName).
  2248  The types of the expressions must be <a href="#Assignability">assignable</a>
  2249  to the respective field, element, and key types of the LiteralType;
  2250  there is no additional conversion.
  2251  The key is interpreted as a field name for struct literals,
  2252  an index for array and slice literals, and a key for map literals.
  2253  For map literals, all elements must have a key. It is an error
  2254  to specify multiple elements with the same field name or
  2255  constant key value.
  2256  </p>
  2257  
  2258  <p>
  2259  For struct literals the following rules apply:
  2260  </p>
  2261  <ul>
  2262  	<li>A key must be a field name declared in the LiteralType.
  2263  	</li>
  2264  	<li>An element list that does not contain any keys must
  2265  	    list an element for each struct field in the
  2266  	    order in which the fields are declared.
  2267  	</li>
  2268  	<li>If any element has a key, every element must have a key.
  2269  	</li>
  2270  	<li>An element list that contains keys does not need to
  2271  	    have an element for each struct field. Omitted fields
  2272  	    get the zero value for that field.
  2273  	</li>
  2274  	<li>A literal may omit the element list; such a literal evaluates
  2275  	    to the zero value for its type.
  2276  	</li>
  2277  	<li>It is an error to specify an element for a non-exported
  2278  	    field of a struct belonging to a different package.
  2279  	</li>
  2280  </ul>
  2281  
  2282  <p>
  2283  Given the declarations
  2284  </p>
  2285  <pre>
  2286  type Point3D struct { x, y, z float64 }
  2287  type Line struct { p, q Point3D }
  2288  </pre>
  2289  
  2290  <p>
  2291  one may write
  2292  </p>
  2293  
  2294  <pre>
  2295  origin := Point3D{}                            // zero value for Point3D
  2296  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2297  </pre>
  2298  
  2299  <p>
  2300  For array and slice literals the following rules apply:
  2301  </p>
  2302  <ul>
  2303  	<li>Each element has an associated integer index marking
  2304  	    its position in the array.
  2305  	</li>
  2306  	<li>An element with a key uses the key as its index; the
  2307  	    key must be a constant integer expression.
  2308  	</li>
  2309  	<li>An element without a key uses the previous element's index plus one.
  2310  	    If the first element has no key, its index is zero.
  2311  	</li>
  2312  </ul>
  2313  
  2314  <p>
  2315  <a href="#Address_operators">Taking the address</a> of a composite literal
  2316  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2317  with the literal's value.
  2318  </p>
  2319  <pre>
  2320  var pointer *Point3D = &amp;Point3D{y: 1000}
  2321  </pre>
  2322  
  2323  <p>
  2324  The length of an array literal is the length specified in the LiteralType.
  2325  If fewer elements than the length are provided in the literal, the missing
  2326  elements are set to the zero value for the array element type.
  2327  It is an error to provide elements with index values outside the index range
  2328  of the array. The notation <code>...</code> specifies an array length equal
  2329  to the maximum element index plus one.
  2330  </p>
  2331  
  2332  <pre>
  2333  buffer := [10]string{}             // len(buffer) == 10
  2334  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2335  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2336  </pre>
  2337  
  2338  <p>
  2339  A slice literal describes the entire underlying array literal.
  2340  Thus, the length and capacity of a slice literal are the maximum
  2341  element index plus one. A slice literal has the form
  2342  </p>
  2343  
  2344  <pre>
  2345  []T{x1, x2, … xn}
  2346  </pre>
  2347  
  2348  <p>
  2349  and is shorthand for a slice operation applied to an array:
  2350  </p>
  2351  
  2352  <pre>
  2353  tmp := [n]T{x1, x2, … xn}
  2354  tmp[0 : n]
  2355  </pre>
  2356  
  2357  <p>
  2358  Within a composite literal of array, slice, or map type <code>T</code>,
  2359  elements or map keys that are themselves composite literals may elide the respective
  2360  literal type if it is identical to the element or key type of <code>T</code>.
  2361  Similarly, elements or keys that are addresses of composite literals may elide
  2362  the <code>&amp;T</code> when the element or key type is <code>*T</code>.
  2363  </p>
  2364  
  2365  <pre>
  2366  [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2367  [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2368  [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
  2369  map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
  2370  
  2371  [...]*Point{{1.5, -3.5}, {0, 0}}    // same as [...]*Point{&amp;Point{1.5, -3.5}, &amp;Point{0, 0}}
  2372  
  2373  map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
  2374  </pre>
  2375  
  2376  <p>
  2377  A parsing ambiguity arises when a composite literal using the
  2378  TypeName form of the LiteralType appears as an operand between the
  2379  <a href="#Keywords">keyword</a> and the opening brace of the block
  2380  of an "if", "for", or "switch" statement, and the composite literal
  2381  is not enclosed in parentheses, square brackets, or curly braces.
  2382  In this rare case, the opening brace of the literal is erroneously parsed
  2383  as the one introducing the block of statements. To resolve the ambiguity,
  2384  the composite literal must appear within parentheses.
  2385  </p>
  2386  
  2387  <pre>
  2388  if x == (T{a,b,c}[i]) { … }
  2389  if (x == T{a,b,c}[i]) { … }
  2390  </pre>
  2391  
  2392  <p>
  2393  Examples of valid array, slice, and map literals:
  2394  </p>
  2395  
  2396  <pre>
  2397  // list of prime numbers
  2398  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2399  
  2400  // vowels[ch] is true if ch is a vowel
  2401  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2402  
  2403  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2404  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2405  
  2406  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2407  noteFrequency := map[string]float32{
  2408  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2409  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2410  }
  2411  </pre>
  2412  
  2413  
  2414  <h3 id="Function_literals">Function literals</h3>
  2415  
  2416  <p>
  2417  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2418  </p>
  2419  
  2420  <pre class="ebnf">
  2421  FunctionLit = "func" Function .
  2422  </pre>
  2423  
  2424  <pre>
  2425  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2426  </pre>
  2427  
  2428  <p>
  2429  A function literal can be assigned to a variable or invoked directly.
  2430  </p>
  2431  
  2432  <pre>
  2433  f := func(x, y int) int { return x + y }
  2434  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2435  </pre>
  2436  
  2437  <p>
  2438  Function literals are <i>closures</i>: they may refer to variables
  2439  defined in a surrounding function. Those variables are then shared between
  2440  the surrounding function and the function literal, and they survive as long
  2441  as they are accessible.
  2442  </p>
  2443  
  2444  
  2445  <h3 id="Primary_expressions">Primary expressions</h3>
  2446  
  2447  <p>
  2448  Primary expressions are the operands for unary and binary expressions.
  2449  </p>
  2450  
  2451  <pre class="ebnf">
  2452  PrimaryExpr =
  2453  	Operand |
  2454  	Conversion |
  2455  	PrimaryExpr Selector |
  2456  	PrimaryExpr Index |
  2457  	PrimaryExpr Slice |
  2458  	PrimaryExpr TypeAssertion |
  2459  	PrimaryExpr Arguments .
  2460  
  2461  Selector       = "." identifier .
  2462  Index          = "[" Expression "]" .
  2463  Slice          = "[" ( [ Expression ] ":" [ Expression ] ) |
  2464                       ( [ Expression ] ":" Expression ":" Expression )
  2465                   "]" .
  2466  TypeAssertion  = "." "(" Type ")" .
  2467  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2468  </pre>
  2469  
  2470  
  2471  <pre>
  2472  x
  2473  2
  2474  (s + ".txt")
  2475  f(3.1415, true)
  2476  Point{1, 2}
  2477  m["foo"]
  2478  s[i : j + 1]
  2479  obj.color
  2480  f.p[i].x()
  2481  </pre>
  2482  
  2483  
  2484  <h3 id="Selectors">Selectors</h3>
  2485  
  2486  <p>
  2487  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2488  that is not a <a href="#Package_clause">package name</a>, the
  2489  <i>selector expression</i>
  2490  </p>
  2491  
  2492  <pre>
  2493  x.f
  2494  </pre>
  2495  
  2496  <p>
  2497  denotes the field or method <code>f</code> of the value <code>x</code>
  2498  (or sometimes <code>*x</code>; see below).
  2499  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2500  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2501  The type of the selector expression is the type of <code>f</code>.
  2502  If <code>x</code> is a package name, see the section on
  2503  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2504  </p>
  2505  
  2506  <p>
  2507  A selector <code>f</code> may denote a field or method <code>f</code> of
  2508  a type <code>T</code>, or it may refer
  2509  to a field or method <code>f</code> of a nested
  2510  <a href="#Struct_types">anonymous field</a> of <code>T</code>.
  2511  The number of anonymous fields traversed
  2512  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2513  The depth of a field or method <code>f</code>
  2514  declared in <code>T</code> is zero.
  2515  The depth of a field or method <code>f</code> declared in
  2516  an anonymous field <code>A</code> in <code>T</code> is the
  2517  depth of <code>f</code> in <code>A</code> plus one.
  2518  </p>
  2519  
  2520  <p>
  2521  The following rules apply to selectors:
  2522  </p>
  2523  
  2524  <ol>
  2525  <li>
  2526  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2527  where <code>T</code> is not a pointer or interface type,
  2528  <code>x.f</code> denotes the field or method at the shallowest depth
  2529  in <code>T</code> where there
  2530  is such an <code>f</code>.
  2531  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2532  with shallowest depth, the selector expression is illegal.
  2533  </li>
  2534  
  2535  <li>
  2536  For a value <code>x</code> of type <code>I</code> where <code>I</code>
  2537  is an interface type, <code>x.f</code> denotes the actual method with name
  2538  <code>f</code> of the dynamic value of <code>x</code>.
  2539  If there is no method with name <code>f</code> in the
  2540  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2541  expression is illegal.
  2542  </li>
  2543  
  2544  <li>
  2545  As an exception, if the type of <code>x</code> is a named pointer type
  2546  and <code>(*x).f</code> is a valid selector expression denoting a field
  2547  (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
  2548  </li>
  2549  
  2550  <li>
  2551  In all other cases, <code>x.f</code> is illegal.
  2552  </li>
  2553  
  2554  <li>
  2555  If <code>x</code> is of pointer type and has the value
  2556  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2557  assigning to or evaluating <code>x.f</code>
  2558  causes a <a href="#Run_time_panics">run-time panic</a>.
  2559  </li>
  2560  
  2561  <li>
  2562  If <code>x</code> is of interface type and has the value
  2563  <code>nil</code>, <a href="#Calls">calling</a> or
  2564  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2565  causes a <a href="#Run_time_panics">run-time panic</a>.
  2566  </li>
  2567  </ol>
  2568  
  2569  <p>
  2570  For example, given the declarations:
  2571  </p>
  2572  
  2573  <pre>
  2574  type T0 struct {
  2575  	x int
  2576  }
  2577  
  2578  func (*T0) M0()
  2579  
  2580  type T1 struct {
  2581  	y int
  2582  }
  2583  
  2584  func (T1) M1()
  2585  
  2586  type T2 struct {
  2587  	z int
  2588  	T1
  2589  	*T0
  2590  }
  2591  
  2592  func (*T2) M2()
  2593  
  2594  type Q *T2
  2595  
  2596  var t T2     // with t.T0 != nil
  2597  var p *T2    // with p != nil and (*p).T0 != nil
  2598  var q Q = p
  2599  </pre>
  2600  
  2601  <p>
  2602  one may write:
  2603  </p>
  2604  
  2605  <pre>
  2606  t.z          // t.z
  2607  t.y          // t.T1.y
  2608  t.x          // (*t.TO).x
  2609  
  2610  p.z          // (*p).z
  2611  p.y          // (*p).T1.y
  2612  p.x          // (*(*p).T0).x
  2613  
  2614  q.x          // (*(*q).T0).x        (*q).x is a valid field selector
  2615  
  2616  p.M2()       // p.M2()              M2 expects *T2 receiver
  2617  p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
  2618  p.M0()       // ((&(*p).T0)).M0()   M0 expects *T0 receiver, see section on Calls
  2619  </pre>
  2620  
  2621  <p>
  2622  but the following is invalid:
  2623  </p>
  2624  
  2625  <pre>
  2626  q.M0()       // (*q).M0 is valid but not a field selector
  2627  </pre>
  2628  
  2629  
  2630  <h3 id="Method_expressions">Method expressions</h3>
  2631  
  2632  <p>
  2633  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2634  <code>T.M</code> is a function that is callable as a regular function
  2635  with the same arguments as <code>M</code> prefixed by an additional
  2636  argument that is the receiver of the method.
  2637  </p>
  2638  
  2639  <pre class="ebnf">
  2640  MethodExpr    = ReceiverType "." MethodName .
  2641  ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
  2642  </pre>
  2643  
  2644  <p>
  2645  Consider a struct type <code>T</code> with two methods,
  2646  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2647  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2648  </p>
  2649  
  2650  <pre>
  2651  type T struct {
  2652  	a int
  2653  }
  2654  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2655  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2656  
  2657  var t T
  2658  </pre>
  2659  
  2660  <p>
  2661  The expression
  2662  </p>
  2663  
  2664  <pre>
  2665  T.Mv
  2666  </pre>
  2667  
  2668  <p>
  2669  yields a function equivalent to <code>Mv</code> but
  2670  with an explicit receiver as its first argument; it has signature
  2671  </p>
  2672  
  2673  <pre>
  2674  func(tv T, a int) int
  2675  </pre>
  2676  
  2677  <p>
  2678  That function may be called normally with an explicit receiver, so
  2679  these five invocations are equivalent:
  2680  </p>
  2681  
  2682  <pre>
  2683  t.Mv(7)
  2684  T.Mv(t, 7)
  2685  (T).Mv(t, 7)
  2686  f1 := T.Mv; f1(t, 7)
  2687  f2 := (T).Mv; f2(t, 7)
  2688  </pre>
  2689  
  2690  <p>
  2691  Similarly, the expression
  2692  </p>
  2693  
  2694  <pre>
  2695  (*T).Mp
  2696  </pre>
  2697  
  2698  <p>
  2699  yields a function value representing <code>Mp</code> with signature
  2700  </p>
  2701  
  2702  <pre>
  2703  func(tp *T, f float32) float32
  2704  </pre>
  2705  
  2706  <p>
  2707  For a method with a value receiver, one can derive a function
  2708  with an explicit pointer receiver, so
  2709  </p>
  2710  
  2711  <pre>
  2712  (*T).Mv
  2713  </pre>
  2714  
  2715  <p>
  2716  yields a function value representing <code>Mv</code> with signature
  2717  </p>
  2718  
  2719  <pre>
  2720  func(tv *T, a int) int
  2721  </pre>
  2722  
  2723  <p>
  2724  Such a function indirects through the receiver to create a value
  2725  to pass as the receiver to the underlying method;
  2726  the method does not overwrite the value whose address is passed in
  2727  the function call.
  2728  </p>
  2729  
  2730  <p>
  2731  The final case, a value-receiver function for a pointer-receiver method,
  2732  is illegal because pointer-receiver methods are not in the method set
  2733  of the value type.
  2734  </p>
  2735  
  2736  <p>
  2737  Function values derived from methods are called with function call syntax;
  2738  the receiver is provided as the first argument to the call.
  2739  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2740  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2741  To construct a function that binds the receiver, use a
  2742  <a href="#Function_literals">function literal</a> or
  2743  <a href="#Method_values">method value</a>.
  2744  </p>
  2745  
  2746  <p>
  2747  It is legal to derive a function value from a method of an interface type.
  2748  The resulting function takes an explicit receiver of that interface type.
  2749  </p>
  2750  
  2751  <h3 id="Method_values">Method values</h3>
  2752  
  2753  <p>
  2754  If the expression <code>x</code> has static type <code>T</code> and
  2755  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2756  <code>x.M</code> is called a <i>method value</i>.
  2757  The method value <code>x.M</code> is a function value that is callable
  2758  with the same arguments as a method call of <code>x.M</code>.
  2759  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2760  method value; the saved copy is then used as the receiver in any calls,
  2761  which may be executed later.
  2762  </p>
  2763  
  2764  <p>
  2765  The type <code>T</code> may be an interface or non-interface type.
  2766  </p>
  2767  
  2768  <p>
  2769  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2770  consider a struct type <code>T</code> with two methods,
  2771  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2772  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2773  </p>
  2774  
  2775  <pre>
  2776  type T struct {
  2777  	a int
  2778  }
  2779  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2780  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2781  
  2782  var t T
  2783  var pt *T
  2784  func makeT() T
  2785  </pre>
  2786  
  2787  <p>
  2788  The expression
  2789  </p>
  2790  
  2791  <pre>
  2792  t.Mv
  2793  </pre>
  2794  
  2795  <p>
  2796  yields a function value of type
  2797  </p>
  2798  
  2799  <pre>
  2800  func(int) int
  2801  </pre>
  2802  
  2803  <p>
  2804  These two invocations are equivalent:
  2805  </p>
  2806  
  2807  <pre>
  2808  t.Mv(7)
  2809  f := t.Mv; f(7)
  2810  </pre>
  2811  
  2812  <p>
  2813  Similarly, the expression
  2814  </p>
  2815  
  2816  <pre>
  2817  pt.Mp
  2818  </pre>
  2819  
  2820  <p>
  2821  yields a function value of type
  2822  </p>
  2823  
  2824  <pre>
  2825  func(float32) float32
  2826  </pre>
  2827  
  2828  <p>
  2829  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2830  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2831  </p>
  2832  
  2833  <p>
  2834  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2835  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2836  </p>
  2837  
  2838  <pre>
  2839  f := t.Mv; f(7)   // like t.Mv(7)
  2840  f := pt.Mp; f(7)  // like pt.Mp(7)
  2841  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2842  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2843  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2844  </pre>
  2845  
  2846  <p>
  2847  Although the examples above use non-interface types, it is also legal to create a method value
  2848  from a value of interface type.
  2849  </p>
  2850  
  2851  <pre>
  2852  var i interface { M(int) } = myVal
  2853  f := i.M; f(7)  // like i.M(7)
  2854  </pre>
  2855  
  2856  
  2857  <h3 id="Index_expressions">Index expressions</h3>
  2858  
  2859  <p>
  2860  A primary expression of the form
  2861  </p>
  2862  
  2863  <pre>
  2864  a[x]
  2865  </pre>
  2866  
  2867  <p>
  2868  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2869  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2870  The following rules apply:
  2871  </p>
  2872  
  2873  <p>
  2874  If <code>a</code> is not a map:
  2875  </p>
  2876  <ul>
  2877  	<li>the index <code>x</code> must be of integer type or untyped;
  2878  	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2879  	    otherwise it is <i>out of range</i></li>
  2880  	<li>a <a href="#Constants">constant</a> index must be non-negative
  2881  	    and representable by a value of type <code>int</code>
  2882  </ul>
  2883  
  2884  <p>
  2885  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2886  </p>
  2887  <ul>
  2888  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2889  	<li>if <code>x</code> is out of range at run time,
  2890  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2891  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2892  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2893  </ul>
  2894  
  2895  <p>
  2896  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  2897  </p>
  2898  <ul>
  2899  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  2900  </ul>
  2901  
  2902  <p>
  2903  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  2904  </p>
  2905  <ul>
  2906  	<li>if <code>x</code> is out of range at run time,
  2907  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2908  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  2909  	    <code>a[x]</code> is the element type of <code>S</code></li>
  2910  </ul>
  2911  
  2912  <p>
  2913  For <code>a</code> of <a href="#String_types">string type</a>:
  2914  </p>
  2915  <ul>
  2916  	<li>a <a href="#Constants">constant</a> index must be in range
  2917  	    if the string <code>a</code> is also constant</li>
  2918  	<li>if <code>x</code> is out of range at run time,
  2919  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2920  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  2921  	    <code>a[x]</code> is <code>byte</code></li>
  2922  	<li><code>a[x]</code> may not be assigned to</li>
  2923  </ul>
  2924  
  2925  <p>
  2926  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  2927  </p>
  2928  <ul>
  2929  	<li><code>x</code>'s type must be
  2930  	    <a href="#Assignability">assignable</a>
  2931  	    to the key type of <code>M</code></li>
  2932  	<li>if the map contains an entry with key <code>x</code>,
  2933  	    <code>a[x]</code> is the map value with key <code>x</code>
  2934  	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
  2935  	<li>if the map is <code>nil</code> or does not contain such an entry,
  2936  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  2937  	    for the value type of <code>M</code></li>
  2938  </ul>
  2939  
  2940  <p>
  2941  Otherwise <code>a[x]</code> is illegal.
  2942  </p>
  2943  
  2944  <p>
  2945  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  2946  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  2947  </p>
  2948  
  2949  <pre>
  2950  v, ok = a[x]
  2951  v, ok := a[x]
  2952  var v, ok = a[x]
  2953  </pre>
  2954  
  2955  <p>
  2956  yields an additional untyped boolean value. The value of <code>ok</code> is
  2957  <code>true</code> if the key <code>x</code> is present in the map, and
  2958  <code>false</code> otherwise.
  2959  </p>
  2960  
  2961  <p>
  2962  Assigning to an element of a <code>nil</code> map causes a
  2963  <a href="#Run_time_panics">run-time panic</a>.
  2964  </p>
  2965  
  2966  
  2967  <h3 id="Slice_expressions">Slice expressions</h3>
  2968  
  2969  <p>
  2970  Slice expressions construct a substring or slice from a string, array, pointer
  2971  to array, or slice. There are two variants: a simple form that specifies a low
  2972  and high bound, and a full form that also specifies a bound on the capacity.
  2973  </p>
  2974  
  2975  <h4>Simple slice expressions</h4>
  2976  
  2977  <p>
  2978  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  2979  </p>
  2980  
  2981  <pre>
  2982  a[low : high]
  2983  </pre>
  2984  
  2985  <p>
  2986  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  2987  <code>high</code> select which elements of operand <code>a</code> appear
  2988  in the result. The result has indices starting at 0 and length equal to
  2989  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  2990  After slicing the array <code>a</code>
  2991  </p>
  2992  
  2993  <pre>
  2994  a := [5]int{1, 2, 3, 4, 5}
  2995  s := a[1:4]
  2996  </pre>
  2997  
  2998  <p>
  2999  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  3000  </p>
  3001  
  3002  <pre>
  3003  s[0] == 2
  3004  s[1] == 3
  3005  s[2] == 4
  3006  </pre>
  3007  
  3008  <p>
  3009  For convenience, any of the indices may be omitted. A missing <code>low</code>
  3010  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  3011  sliced operand:
  3012  </p>
  3013  
  3014  <pre>
  3015  a[2:]  // same as a[2 : len(a)]
  3016  a[:3]  // same as a[0 : 3]
  3017  a[:]   // same as a[0 : len(a)]
  3018  </pre>
  3019  
  3020  <p>
  3021  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3022  <code>(*a)[low : high]</code>.
  3023  </p>
  3024  
  3025  <p>
  3026  For arrays or strings, the indices are <i>in range</i> if
  3027  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3028  otherwise they are <i>out of range</i>.
  3029  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3030  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3031  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3032  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3033  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3034  </p>
  3035  
  3036  <p>
  3037  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3038  the result of the slice operation is a non-constant value of the same type as the operand.
  3039  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3040  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3041  and the result of the slice operation is a slice with the same element type as the array.
  3042  </p>
  3043  
  3044  <p>
  3045  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3046  is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
  3047  operand.
  3048  </p>
  3049  
  3050  <h4>Full slice expressions</h4>
  3051  
  3052  <p>
  3053  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3054  </p>
  3055  
  3056  <pre>
  3057  a[low : high : max]
  3058  </pre>
  3059  
  3060  <p>
  3061  constructs a slice of the same type, and with the same length and elements as the simple slice
  3062  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3063  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3064  After slicing the array <code>a</code>
  3065  </p>
  3066  
  3067  <pre>
  3068  a := [5]int{1, 2, 3, 4, 5}
  3069  t := a[1:3:5]
  3070  </pre>
  3071  
  3072  <p>
  3073  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3074  </p>
  3075  
  3076  <pre>
  3077  t[0] == 2
  3078  t[1] == 3
  3079  </pre>
  3080  
  3081  <p>
  3082  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3083  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3084  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3085  </p>
  3086  
  3087  <p>
  3088  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3089  otherwise they are <i>out of range</i>.
  3090  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3091  <code>int</code>; for arrays, constant indices must also be in range.
  3092  If multiple indices are constant, the constants that are present must be in range relative to each
  3093  other.
  3094  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3095  </p>
  3096  
  3097  <h3 id="Type_assertions">Type assertions</h3>
  3098  
  3099  <p>
  3100  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3101  and a type <code>T</code>, the primary expression
  3102  </p>
  3103  
  3104  <pre>
  3105  x.(T)
  3106  </pre>
  3107  
  3108  <p>
  3109  asserts that <code>x</code> is not <code>nil</code>
  3110  and that the value stored in <code>x</code> is of type <code>T</code>.
  3111  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3112  </p>
  3113  <p>
  3114  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3115  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3116  to the type <code>T</code>.
  3117  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3118  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3119  to store a value of type <code>T</code>.
  3120  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3121  of <code>x</code> implements the interface <code>T</code>.
  3122  </p>
  3123  <p>
  3124  If the type assertion holds, the value of the expression is the value
  3125  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3126  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3127  In other words, even though the dynamic type of <code>x</code>
  3128  is known only at run time, the type of <code>x.(T)</code> is
  3129  known to be <code>T</code> in a correct program.
  3130  </p>
  3131  
  3132  <pre>
  3133  var x interface{} = 7  // x has dynamic type int and value 7
  3134  i := x.(int)           // i has type int and value 7
  3135  
  3136  type I interface { m() }
  3137  var y I
  3138  s := y.(string)        // illegal: string does not implement I (missing method m)
  3139  r := y.(io.Reader)     // r has type io.Reader and y must implement both I and io.Reader
  3140  </pre>
  3141  
  3142  <p>
  3143  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3144  </p>
  3145  
  3146  <pre>
  3147  v, ok = x.(T)
  3148  v, ok := x.(T)
  3149  var v, ok = x.(T)
  3150  </pre>
  3151  
  3152  <p>
  3153  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3154  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3155  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3156  No run-time panic occurs in this case.
  3157  </p>
  3158  
  3159  
  3160  <h3 id="Calls">Calls</h3>
  3161  
  3162  <p>
  3163  Given an expression <code>f</code> of function type
  3164  <code>F</code>,
  3165  </p>
  3166  
  3167  <pre>
  3168  f(a1, a2, … an)
  3169  </pre>
  3170  
  3171  <p>
  3172  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3173  Except for one special case, arguments must be single-valued expressions
  3174  <a href="#Assignability">assignable</a> to the parameter types of
  3175  <code>F</code> and are evaluated before the function is called.
  3176  The type of the expression is the result type
  3177  of <code>F</code>.
  3178  A method invocation is similar but the method itself
  3179  is specified as a selector upon a value of the receiver type for
  3180  the method.
  3181  </p>
  3182  
  3183  <pre>
  3184  math.Atan2(x, y)  // function call
  3185  var pt *Point
  3186  pt.Scale(3.5)     // method call with receiver pt
  3187  </pre>
  3188  
  3189  <p>
  3190  In a function call, the function value and arguments are evaluated in
  3191  <a href="#Order_of_evaluation">the usual order</a>.
  3192  After they are evaluated, the parameters of the call are passed by value to the function
  3193  and the called function begins execution.
  3194  The return parameters of the function are passed by value
  3195  back to the calling function when the function returns.
  3196  </p>
  3197  
  3198  <p>
  3199  Calling a <code>nil</code> function value
  3200  causes a <a href="#Run_time_panics">run-time panic</a>.
  3201  </p>
  3202  
  3203  <p>
  3204  As a special case, if the return values of a function or method
  3205  <code>g</code> are equal in number and individually
  3206  assignable to the parameters of another function or method
  3207  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3208  will invoke <code>f</code> after binding the return values of
  3209  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3210  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3211  and <code>g</code> must have at least one return value.
  3212  If <code>f</code> has a final <code>...</code> parameter, it is
  3213  assigned the return values of <code>g</code> that remain after
  3214  assignment of regular parameters.
  3215  </p>
  3216  
  3217  <pre>
  3218  func Split(s string, pos int) (string, string) {
  3219  	return s[0:pos], s[pos:]
  3220  }
  3221  
  3222  func Join(s, t string) string {
  3223  	return s + t
  3224  }
  3225  
  3226  if Join(Split(value, len(value)/2)) != value {
  3227  	log.Panic("test fails")
  3228  }
  3229  </pre>
  3230  
  3231  <p>
  3232  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3233  of (the type of) <code>x</code> contains <code>m</code> and the
  3234  argument list can be assigned to the parameter list of <code>m</code>.
  3235  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3236  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3237  for <code>(&amp;x).m()</code>:
  3238  </p>
  3239  
  3240  <pre>
  3241  var p Point
  3242  p.Scale(3.5)
  3243  </pre>
  3244  
  3245  <p>
  3246  There is no distinct method type and there are no method literals.
  3247  </p>
  3248  
  3249  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3250  
  3251  <p>
  3252  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3253  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3254  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3255  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3256  the value passed to <code>p</code> is <code>nil</code>.
  3257  Otherwise, the value passed is a new slice
  3258  of type <code>[]T</code> with a new underlying array whose successive elements
  3259  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3260  to <code>T</code>. The length and capacity of the slice is therefore
  3261  the number of arguments bound to <code>p</code> and may differ for each
  3262  call site.
  3263  </p>
  3264  
  3265  <p>
  3266  Given the function and calls
  3267  </p>
  3268  <pre>
  3269  func Greeting(prefix string, who ...string)
  3270  Greeting("nobody")
  3271  Greeting("hello:", "Joe", "Anna", "Eileen")
  3272  </pre>
  3273  
  3274  <p>
  3275  within <code>Greeting</code>, <code>who</code> will have the value
  3276  <code>nil</code> in the first call, and
  3277  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3278  </p>
  3279  
  3280  <p>
  3281  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3282  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3283  is followed by <code>...</code>. In this case no new slice is created.
  3284  </p>
  3285  
  3286  <p>
  3287  Given the slice <code>s</code> and call
  3288  </p>
  3289  
  3290  <pre>
  3291  s := []string{"James", "Jasmine"}
  3292  Greeting("goodbye:", s...)
  3293  </pre>
  3294  
  3295  <p>
  3296  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3297  with the same underlying array.
  3298  </p>
  3299  
  3300  
  3301  <h3 id="Operators">Operators</h3>
  3302  
  3303  <p>
  3304  Operators combine operands into expressions.
  3305  </p>
  3306  
  3307  <pre class="ebnf">
  3308  Expression = UnaryExpr | Expression binary_op UnaryExpr .
  3309  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3310  
  3311  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3312  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3313  add_op     = "+" | "-" | "|" | "^" .
  3314  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3315  
  3316  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3317  </pre>
  3318  
  3319  <p>
  3320  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3321  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3322  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3323  For operations involving constants only, see the section on
  3324  <a href="#Constant_expressions">constant expressions</a>.
  3325  </p>
  3326  
  3327  <p>
  3328  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3329  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3330  to the type of the other operand.
  3331  </p>
  3332  
  3333  <p>
  3334  The right operand in a shift expression must have unsigned integer type
  3335  or be an untyped constant that can be converted to unsigned integer type.
  3336  If the left operand of a non-constant shift expression is an untyped constant,
  3337  the type of the constant is what it would be if the shift expression were
  3338  replaced by its left operand alone.
  3339  </p>
  3340  
  3341  <pre>
  3342  var s uint = 33
  3343  var i = 1&lt;&lt;s           // 1 has type int
  3344  var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
  3345  var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
  3346  var m int = 1.0&lt;&lt;s     // 1.0 has type int
  3347  var n = 1.0&lt;&lt;s != i    // 1.0 has type int; n == false if ints are 32bits in size
  3348  var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
  3349  var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3350  var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
  3351  var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
  3352  var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
  3353  var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
  3354  var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
  3355  </pre>
  3356  
  3357  <h3 id="Operator_precedence">Operator precedence</h3>
  3358  <p>
  3359  Unary operators have the highest precedence.
  3360  As the  <code>++</code> and <code>--</code> operators form
  3361  statements, not expressions, they fall
  3362  outside the operator hierarchy.
  3363  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3364  <p>
  3365  There are five precedence levels for binary operators.
  3366  Multiplication operators bind strongest, followed by addition
  3367  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3368  and finally <code>||</code> (logical OR):
  3369  </p>
  3370  
  3371  <pre class="grammar">
  3372  Precedence    Operator
  3373      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3374      4             +  -  |  ^
  3375      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3376      2             &amp;&amp;
  3377      1             ||
  3378  </pre>
  3379  
  3380  <p>
  3381  Binary operators of the same precedence associate from left to right.
  3382  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3383  </p>
  3384  
  3385  <pre>
  3386  +x
  3387  23 + 3*x[i]
  3388  x &lt;= f()
  3389  ^a &gt;&gt; b
  3390  f() || g()
  3391  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3392  </pre>
  3393  
  3394  
  3395  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3396  <p>
  3397  Arithmetic operators apply to numeric values and yield a result of the same
  3398  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3399  <code>-</code>,  <code>*</code>, <code>/</code>) apply to integer,
  3400  floating-point, and complex types; <code>+</code> also applies
  3401  to strings. All other arithmetic operators apply to integers only.
  3402  </p>
  3403  
  3404  <pre class="grammar">
  3405  +    sum                    integers, floats, complex values, strings
  3406  -    difference             integers, floats, complex values
  3407  *    product                integers, floats, complex values
  3408  /    quotient               integers, floats, complex values
  3409  %    remainder              integers
  3410  
  3411  &amp;    bitwise AND            integers
  3412  |    bitwise OR             integers
  3413  ^    bitwise XOR            integers
  3414  &amp;^   bit clear (AND NOT)    integers
  3415  
  3416  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3417  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3418  </pre>
  3419  
  3420  <p>
  3421  Strings can be concatenated using the <code>+</code> operator
  3422  or the <code>+=</code> assignment operator:
  3423  </p>
  3424  
  3425  <pre>
  3426  s := "hi" + string(c)
  3427  s += " and good bye"
  3428  </pre>
  3429  
  3430  <p>
  3431  String addition creates a new string by concatenating the operands.
  3432  </p>
  3433  <p>
  3434  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3435  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3436  relationships:
  3437  </p>
  3438  
  3439  <pre>
  3440  x = q*y + r  and  |r| &lt; |y|
  3441  </pre>
  3442  
  3443  <p>
  3444  with <code>x / y</code> truncated towards zero
  3445  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3446  </p>
  3447  
  3448  <pre>
  3449   x     y     x / y     x % y
  3450   5     3       1         2
  3451  -5     3      -1        -2
  3452   5    -3      -1         2
  3453  -5    -3       1        -2
  3454  </pre>
  3455  
  3456  <p>
  3457  As an exception to this rule, if the dividend <code>x</code> is the most
  3458  negative value for the int type of <code>x</code>, the quotient
  3459  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
  3460  </p>
  3461  
  3462  <pre>
  3463  			 x, q
  3464  int8                     -128
  3465  int16                  -32768
  3466  int32             -2147483648
  3467  int64    -9223372036854775808
  3468  </pre>
  3469  
  3470  <p>
  3471  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3472  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3473  If the dividend is non-negative and the divisor is a constant power of 2,
  3474  the division may be replaced by a right shift, and computing the remainder may
  3475  be replaced by a bitwise AND operation:
  3476  </p>
  3477  
  3478  <pre>
  3479   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3480   11      2         3         2          3
  3481  -11     -2        -3        -3          1
  3482  </pre>
  3483  
  3484  <p>
  3485  The shift operators shift the left operand by the shift count specified by the
  3486  right operand. They implement arithmetic shifts if the left operand is a signed
  3487  integer and logical shifts if it is an unsigned integer.
  3488  There is no upper limit on the shift count. Shifts behave
  3489  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3490  count of <code>n</code>.
  3491  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3492  and <code>x &gt;&gt; 1</code> is the same as
  3493  <code>x/2</code> but truncated towards negative infinity.
  3494  </p>
  3495  
  3496  <p>
  3497  For integer operands, the unary operators
  3498  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3499  follows:
  3500  </p>
  3501  
  3502  <pre class="grammar">
  3503  +x                          is 0 + x
  3504  -x    negation              is 0 - x
  3505  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3506                                        and  m = -1 for signed x
  3507  </pre>
  3508  
  3509  <p>
  3510  For floating-point and complex numbers,
  3511  <code>+x</code> is the same as <code>x</code>,
  3512  while <code>-x</code> is the negation of <code>x</code>.
  3513  The result of a floating-point or complex division by zero is not specified beyond the
  3514  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3515  occurs is implementation-specific.
  3516  </p>
  3517  
  3518  <h3 id="Integer_overflow">Integer overflow</h3>
  3519  
  3520  <p>
  3521  For unsigned integer values, the operations <code>+</code>,
  3522  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3523  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3524  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3525  Loosely speaking, these unsigned integer operations
  3526  discard high bits upon overflow, and programs may rely on ``wrap around''.
  3527  </p>
  3528  <p>
  3529  For signed integers, the operations <code>+</code>,
  3530  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
  3531  overflow and the resulting value exists and is deterministically defined
  3532  by the signed integer representation, the operation, and its operands.
  3533  No exception is raised as a result of overflow. A
  3534  compiler may not optimize code under the assumption that overflow does
  3535  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3536  </p>
  3537  
  3538  
  3539  <h3 id="Comparison_operators">Comparison operators</h3>
  3540  
  3541  <p>
  3542  Comparison operators compare two operands and yield an untyped boolean value.
  3543  </p>
  3544  
  3545  <pre class="grammar">
  3546  ==    equal
  3547  !=    not equal
  3548  &lt;     less
  3549  &lt;=    less or equal
  3550  &gt;     greater
  3551  &gt;=    greater or equal
  3552  </pre>
  3553  
  3554  <p>
  3555  In any comparison, the first operand
  3556  must be <a href="#Assignability">assignable</a>
  3557  to the type of the second operand, or vice versa.
  3558  </p>
  3559  <p>
  3560  The equality operators <code>==</code> and <code>!=</code> apply
  3561  to operands that are <i>comparable</i>.
  3562  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3563  apply to operands that are <i>ordered</i>.
  3564  These terms and the result of the comparisons are defined as follows:
  3565  </p>
  3566  
  3567  <ul>
  3568  	<li>
  3569  	Boolean values are comparable.
  3570  	Two boolean values are equal if they are either both
  3571  	<code>true</code> or both <code>false</code>.
  3572  	</li>
  3573  
  3574  	<li>
  3575  	Integer values are comparable and ordered, in the usual way.
  3576  	</li>
  3577  
  3578  	<li>
  3579  	Floating point values are comparable and ordered,
  3580  	as defined by the IEEE-754 standard.
  3581  	</li>
  3582  
  3583  	<li>
  3584  	Complex values are comparable.
  3585  	Two complex values <code>u</code> and <code>v</code> are
  3586  	equal if both <code>real(u) == real(v)</code> and
  3587  	<code>imag(u) == imag(v)</code>.
  3588  	</li>
  3589  
  3590  	<li>
  3591  	String values are comparable and ordered, lexically byte-wise.
  3592  	</li>
  3593  
  3594  	<li>
  3595  	Pointer values are comparable.
  3596  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3597  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3598  	</li>
  3599  
  3600  	<li>
  3601  	Channel values are comparable.
  3602  	Two channel values are equal if they were created by the same call to
  3603  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3604  	or if both have value <code>nil</code>.
  3605  	</li>
  3606  
  3607  	<li>
  3608  	Interface values are comparable.
  3609  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3610  	and equal dynamic values or if both have value <code>nil</code>.
  3611  	</li>
  3612  
  3613  	<li>
  3614  	A value <code>x</code> of non-interface type <code>X</code> and
  3615  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3616  	of type <code>X</code> are comparable and
  3617  	<code>X</code> implements <code>T</code>.
  3618  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3619  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3620  	</li>
  3621  
  3622  	<li>
  3623  	Struct values are comparable if all their fields are comparable.
  3624  	Two struct values are equal if their corresponding
  3625  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3626  	</li>
  3627  
  3628  	<li>
  3629  	Array values are comparable if values of the array element type are comparable.
  3630  	Two array values are equal if their corresponding elements are equal.
  3631  	</li>
  3632  </ul>
  3633  
  3634  <p>
  3635  A comparison of two interface values with identical dynamic types
  3636  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3637  of that type are not comparable.  This behavior applies not only to direct interface
  3638  value comparisons but also when comparing arrays of interface values
  3639  or structs with interface-valued fields.
  3640  </p>
  3641  
  3642  <p>
  3643  Slice, map, and function values are not comparable.
  3644  However, as a special case, a slice, map, or function value may
  3645  be compared to the predeclared identifier <code>nil</code>.
  3646  Comparison of pointer, channel, and interface values to <code>nil</code>
  3647  is also allowed and follows from the general rules above.
  3648  </p>
  3649  
  3650  <pre>
  3651  const c = 3 &lt; 4            // c is the untyped bool constant true
  3652  
  3653  type MyBool bool
  3654  var x, y int
  3655  var (
  3656  	// The result of a comparison is an untyped bool.
  3657  	// The usual assignment rules apply.
  3658  	b3        = x == y // b3 has type bool
  3659  	b4 bool   = x == y // b4 has type bool
  3660  	b5 MyBool = x == y // b5 has type MyBool
  3661  )
  3662  </pre>
  3663  
  3664  <h3 id="Logical_operators">Logical operators</h3>
  3665  
  3666  <p>
  3667  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3668  and yield a result of the same type as the operands.
  3669  The right operand is evaluated conditionally.
  3670  </p>
  3671  
  3672  <pre class="grammar">
  3673  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3674  ||    conditional OR     p || q  is  "if p then true else q"
  3675  !     NOT                !p      is  "not p"
  3676  </pre>
  3677  
  3678  
  3679  <h3 id="Address_operators">Address operators</h3>
  3680  
  3681  <p>
  3682  For an operand <code>x</code> of type <code>T</code>, the address operation
  3683  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3684  The operand must be <i>addressable</i>,
  3685  that is, either a variable, pointer indirection, or slice indexing
  3686  operation; or a field selector of an addressable struct operand;
  3687  or an array indexing operation of an addressable array.
  3688  As an exception to the addressability requirement, <code>x</code> may also be a
  3689  (possibly parenthesized)
  3690  <a href="#Composite_literals">composite literal</a>.
  3691  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3692  then the evaluation of <code>&amp;x</code> does too.
  3693  </p>
  3694  
  3695  <p>
  3696  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3697  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3698  to by <code>x</code>.
  3699  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3700  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3701  </p>
  3702  
  3703  <pre>
  3704  &amp;x
  3705  &amp;a[f(2)]
  3706  &amp;Point{2, 3}
  3707  *p
  3708  *pf(x)
  3709  
  3710  var x *int = nil
  3711  *x   // causes a run-time panic
  3712  &amp;*x  // causes a run-time panic
  3713  </pre>
  3714  
  3715  
  3716  <h3 id="Receive_operator">Receive operator</h3>
  3717  
  3718  <p>
  3719  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3720  the value of the receive operation <code>&lt;-ch</code> is the value received
  3721  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3722  and the type of the receive operation is the element type of the channel.
  3723  The expression blocks until a value is available.
  3724  Receiving from a <code>nil</code> channel blocks forever.
  3725  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3726  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3727  after any previously sent values have been received.
  3728  </p>
  3729  
  3730  <pre>
  3731  v1 := &lt;-ch
  3732  v2 = &lt;-ch
  3733  f(&lt;-ch)
  3734  &lt;-strobe  // wait until clock pulse and discard received value
  3735  </pre>
  3736  
  3737  <p>
  3738  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3739  </p>
  3740  
  3741  <pre>
  3742  x, ok = &lt;-ch
  3743  x, ok := &lt;-ch
  3744  var x, ok = &lt;-ch
  3745  </pre>
  3746  
  3747  <p>
  3748  yields an additional untyped boolean result reporting whether the
  3749  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3750  if the value received was delivered by a successful send operation to the
  3751  channel, or <code>false</code> if it is a zero value generated because the
  3752  channel is closed and empty.
  3753  </p>
  3754  
  3755  
  3756  <h3 id="Conversions">Conversions</h3>
  3757  
  3758  <p>
  3759  Conversions are expressions of the form <code>T(x)</code>
  3760  where <code>T</code> is a type and <code>x</code> is an expression
  3761  that can be converted to type <code>T</code>.
  3762  </p>
  3763  
  3764  <pre class="ebnf">
  3765  Conversion = Type "(" Expression [ "," ] ")" .
  3766  </pre>
  3767  
  3768  <p>
  3769  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3770  or if the type starts with the keyword <code>func</code>
  3771  and has no result list, it must be parenthesized when
  3772  necessary to avoid ambiguity:
  3773  </p>
  3774  
  3775  <pre>
  3776  *Point(p)        // same as *(Point(p))
  3777  (*Point)(p)      // p is converted to *Point
  3778  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3779  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3780  func()(x)        // function signature func() x
  3781  (func())(x)      // x is converted to func()
  3782  (func() int)(x)  // x is converted to func() int
  3783  func() int(x)    // x is converted to func() int (unambiguous)
  3784  </pre>
  3785  
  3786  <p>
  3787  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3788  type <code>T</code> in any of these cases:
  3789  </p>
  3790  
  3791  <ul>
  3792  	<li>
  3793  	<code>x</code> is representable by a value of type <code>T</code>.
  3794  	</li>
  3795  	<li>
  3796  	<code>x</code> is a floating-point constant,
  3797  	<code>T</code> is a floating-point type,
  3798  	and <code>x</code> is representable by a value
  3799  	of type <code>T</code> after rounding using
  3800  	IEEE 754 round-to-even rules.
  3801  	The constant <code>T(x)</code> is the rounded value.
  3802  	</li>
  3803  	<li>
  3804  	<code>x</code> is an integer constant and <code>T</code> is a
  3805  	<a href="#String_types">string type</a>.
  3806  	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3807  	as for non-constant <code>x</code> applies in this case.
  3808  	</li>
  3809  </ul>
  3810  
  3811  <p>
  3812  Converting a constant yields a typed constant as result.
  3813  </p>
  3814  
  3815  <pre>
  3816  uint(iota)               // iota value of type uint
  3817  float32(2.718281828)     // 2.718281828 of type float32
  3818  complex128(1)            // 1.0 + 0.0i of type complex128
  3819  float32(0.49999999)      // 0.5 of type float32
  3820  string('x')              // "x" of type string
  3821  string(0x266c)           // "♬" of type string
  3822  MyString("foo" + "bar")  // "foobar" of type MyString
  3823  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3824  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3825  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3826  string(65.0)             // illegal: 65.0 is not an integer constant
  3827  </pre>
  3828  
  3829  <p>
  3830  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3831  in any of these cases:
  3832  </p>
  3833  
  3834  <ul>
  3835  	<li>
  3836  	<code>x</code> is <a href="#Assignability">assignable</a>
  3837  	to <code>T</code>.
  3838  	</li>
  3839  	<li>
  3840  	<code>x</code>'s type and <code>T</code> have identical
  3841  	<a href="#Types">underlying types</a>.
  3842  	</li>
  3843  	<li>
  3844  	<code>x</code>'s type and <code>T</code> are unnamed pointer types
  3845  	and their pointer base types have identical underlying types.
  3846  	</li>
  3847  	<li>
  3848  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3849  	point types.
  3850  	</li>
  3851  	<li>
  3852  	<code>x</code>'s type and <code>T</code> are both complex types.
  3853  	</li>
  3854  	<li>
  3855  	<code>x</code> is an integer or a slice of bytes or runes
  3856  	and <code>T</code> is a string type.
  3857  	</li>
  3858  	<li>
  3859  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  3860  	</li>
  3861  </ul>
  3862  
  3863  <p>
  3864  Specific rules apply to (non-constant) conversions between numeric types or
  3865  to and from a string type.
  3866  These conversions may change the representation of <code>x</code>
  3867  and incur a run-time cost.
  3868  All other conversions only change the type but not the representation
  3869  of <code>x</code>.
  3870  </p>
  3871  
  3872  <p>
  3873  There is no linguistic mechanism to convert between pointers and integers.
  3874  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  3875  implements this functionality under
  3876  restricted circumstances.
  3877  </p>
  3878  
  3879  <h4>Conversions between numeric types</h4>
  3880  
  3881  <p>
  3882  For the conversion of non-constant numeric values, the following rules apply:
  3883  </p>
  3884  
  3885  <ol>
  3886  <li>
  3887  When converting between integer types, if the value is a signed integer, it is
  3888  sign extended to implicit infinite precision; otherwise it is zero extended.
  3889  It is then truncated to fit in the result type's size.
  3890  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  3891  The conversion always yields a valid value; there is no indication of overflow.
  3892  </li>
  3893  <li>
  3894  When converting a floating-point number to an integer, the fraction is discarded
  3895  (truncation towards zero).
  3896  </li>
  3897  <li>
  3898  When converting an integer or floating-point number to a floating-point type,
  3899  or a complex number to another complex type, the result value is rounded
  3900  to the precision specified by the destination type.
  3901  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  3902  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  3903  but float32(x) represents the result of rounding <code>x</code>'s value to
  3904  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  3905  of precision, but <code>float32(x + 0.1)</code> does not.
  3906  </li>
  3907  </ol>
  3908  
  3909  <p>
  3910  In all non-constant conversions involving floating-point or complex values,
  3911  if the result type cannot represent the value the conversion
  3912  succeeds but the result value is implementation-dependent.
  3913  </p>
  3914  
  3915  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  3916  
  3917  <ol>
  3918  <li>
  3919  Converting a signed or unsigned integer value to a string type yields a
  3920  string containing the UTF-8 representation of the integer. Values outside
  3921  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  3922  
  3923  <pre>
  3924  string('a')       // "a"
  3925  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  3926  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  3927  type MyString string
  3928  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  3929  </pre>
  3930  </li>
  3931  
  3932  <li>
  3933  Converting a slice of bytes to a string type yields
  3934  a string whose successive bytes are the elements of the slice.
  3935  
  3936  <pre>
  3937  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  3938  string([]byte{})                                     // ""
  3939  string([]byte(nil))                                  // ""
  3940  
  3941  type MyBytes []byte
  3942  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  3943  </pre>
  3944  </li>
  3945  
  3946  <li>
  3947  Converting a slice of runes to a string type yields
  3948  a string that is the concatenation of the individual rune values
  3949  converted to strings.
  3950  
  3951  <pre>
  3952  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  3953  string([]rune{})                         // ""
  3954  string([]rune(nil))                      // ""
  3955  
  3956  type MyRunes []rune
  3957  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  3958  </pre>
  3959  </li>
  3960  
  3961  <li>
  3962  Converting a value of a string type to a slice of bytes type
  3963  yields a slice whose successive elements are the bytes of the string.
  3964  
  3965  <pre>
  3966  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  3967  []byte("")        // []byte{}
  3968  
  3969  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  3970  </pre>
  3971  </li>
  3972  
  3973  <li>
  3974  Converting a value of a string type to a slice of runes type
  3975  yields a slice containing the individual Unicode code points of the string.
  3976  
  3977  <pre>
  3978  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  3979  []rune("")                 // []rune{}
  3980  
  3981  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  3982  </pre>
  3983  </li>
  3984  </ol>
  3985  
  3986  
  3987  <h3 id="Constant_expressions">Constant expressions</h3>
  3988  
  3989  <p>
  3990  Constant expressions may contain only <a href="#Constants">constant</a>
  3991  operands and are evaluated at compile time.
  3992  </p>
  3993  
  3994  <p>
  3995  Untyped boolean, numeric, and string constants may be used as operands
  3996  wherever it is legal to use an operand of boolean, numeric, or string type,
  3997  respectively.
  3998  Except for shift operations, if the operands of a binary operation are
  3999  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  4000  the kind that appears later in this list: integer, rune, floating-point, complex.
  4001  For example, an untyped integer constant divided by an
  4002  untyped complex constant yields an untyped complex constant.
  4003  </p>
  4004  
  4005  <p>
  4006  A constant <a href="#Comparison_operators">comparison</a> always yields
  4007  an untyped boolean constant.  If the left operand of a constant
  4008  <a href="#Operators">shift expression</a> is an untyped constant, the
  4009  result is an integer constant; otherwise it is a constant of the same
  4010  type as the left operand, which must be of
  4011  <a href="#Numeric_types">integer type</a>.
  4012  Applying all other operators to untyped constants results in an untyped
  4013  constant of the same kind (that is, a boolean, integer, floating-point,
  4014  complex, or string constant).
  4015  </p>
  4016  
  4017  <pre>
  4018  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4019  const b = 15 / 4           // b == 3     (untyped integer constant)
  4020  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4021  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4022  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4023  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4024  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4025  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4026  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4027  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4028  const j = true             // j == true  (untyped boolean constant)
  4029  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4030  const l = "hi"             // l == "hi"  (untyped string constant)
  4031  const m = string(k)        // m == "x"   (type string)
  4032  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4033  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4034  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4035  </pre>
  4036  
  4037  <p>
  4038  Applying the built-in function <code>complex</code> to untyped
  4039  integer, rune, or floating-point constants yields
  4040  an untyped complex constant.
  4041  </p>
  4042  
  4043  <pre>
  4044  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4045  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4046  </pre>
  4047  
  4048  <p>
  4049  Constant expressions are always evaluated exactly; intermediate values and the
  4050  constants themselves may require precision significantly larger than supported
  4051  by any predeclared type in the language. The following are legal declarations:
  4052  </p>
  4053  
  4054  <pre>
  4055  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4056  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4057  </pre>
  4058  
  4059  <p>
  4060  The divisor of a constant division or remainder operation must not be zero:
  4061  </p>
  4062  
  4063  <pre>
  4064  3.14 / 0.0   // illegal: division by zero
  4065  </pre>
  4066  
  4067  <p>
  4068  The values of <i>typed</i> constants must always be accurately representable as values
  4069  of the constant type. The following constant expressions are illegal:
  4070  </p>
  4071  
  4072  <pre>
  4073  uint(-1)     // -1 cannot be represented as a uint
  4074  int(3.14)    // 3.14 cannot be represented as an int
  4075  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4076  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4077  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4078  </pre>
  4079  
  4080  <p>
  4081  The mask used by the unary bitwise complement operator <code>^</code> matches
  4082  the rule for non-constants: the mask is all 1s for unsigned constants
  4083  and -1 for signed and untyped constants.
  4084  </p>
  4085  
  4086  <pre>
  4087  ^1         // untyped integer constant, equal to -2
  4088  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4089  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4090  int8(^1)   // same as int8(-2)
  4091  ^int8(1)   // same as -1 ^ int8(1) = -2
  4092  </pre>
  4093  
  4094  <p>
  4095  Implementation restriction: A compiler may use rounding while
  4096  computing untyped floating-point or complex constant expressions; see
  4097  the implementation restriction in the section
  4098  on <a href="#Constants">constants</a>.  This rounding may cause a
  4099  floating-point constant expression to be invalid in an integer
  4100  context, even if it would be integral when calculated using infinite
  4101  precision.
  4102  </p>
  4103  
  4104  
  4105  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4106  
  4107  <p>
  4108  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4109  determine the evaluation order of individual initialization expressions in
  4110  <a href="#Variable_declarations">variable declarations</a>.
  4111  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4112  expression, assignment, or
  4113  <a href="#Return_statements">return statement</a>,
  4114  all function calls, method calls, and
  4115  communication operations are evaluated in lexical left-to-right
  4116  order.
  4117  </p>
  4118  
  4119  <p>
  4120  For example, in the (function-local) assignment
  4121  </p>
  4122  <pre>
  4123  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4124  </pre>
  4125  <p>
  4126  the function calls and communication happen in the order
  4127  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4128  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4129  However, the order of those events compared to the evaluation
  4130  and indexing of <code>x</code> and the evaluation
  4131  of <code>y</code> is not specified.
  4132  </p>
  4133  
  4134  <pre>
  4135  a := 1
  4136  f := func() int { a++; return a }
  4137  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4138  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4139  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4140  </pre>
  4141  
  4142  <p>
  4143  At package level, initialization dependencies override the left-to-right rule
  4144  for individual initialization expressions, but not for operands within each
  4145  expression:
  4146  </p>
  4147  
  4148  <pre>
  4149  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4150  
  4151  func f() int        { return c }
  4152  func g() int        { return a }
  4153  func sqr(x int) int { return x*x }
  4154  
  4155  // functions u and v are independent of all other variables and functions
  4156  </pre>
  4157  
  4158  <p>
  4159  The function calls happen in the order
  4160  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4161  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4162  </p>
  4163  
  4164  <p>
  4165  Floating-point operations within a single expression are evaluated according to
  4166  the associativity of the operators.  Explicit parentheses affect the evaluation
  4167  by overriding the default associativity.
  4168  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4169  is performed before adding <code>x</code>.
  4170  </p>
  4171  
  4172  <h2 id="Statements">Statements</h2>
  4173  
  4174  <p>
  4175  Statements control execution.
  4176  </p>
  4177  
  4178  <pre class="ebnf">
  4179  Statement =
  4180  	Declaration | LabeledStmt | SimpleStmt |
  4181  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4182  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4183  	DeferStmt .
  4184  
  4185  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4186  </pre>
  4187  
  4188  <h3 id="Terminating_statements">Terminating statements</h3>
  4189  
  4190  <p>
  4191  A terminating statement is one of the following:
  4192  </p>
  4193  
  4194  <ol>
  4195  <li>
  4196  	A <a href="#Return_statements">"return"</a> or
  4197      	<a href="#Goto_statements">"goto"</a> statement.
  4198  	<!-- ul below only for regular layout -->
  4199  	<ul> </ul>
  4200  </li>
  4201  
  4202  <li>
  4203  	A call to the built-in function
  4204  	<a href="#Handling_panics"><code>panic</code></a>.
  4205  	<!-- ul below only for regular layout -->
  4206  	<ul> </ul>
  4207  </li>
  4208  
  4209  <li>
  4210  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4211  	<!-- ul below only for regular layout -->
  4212  	<ul> </ul>
  4213  </li>
  4214  
  4215  <li>
  4216  	An <a href="#If_statements">"if" statement</a> in which:
  4217  	<ul>
  4218  	<li>the "else" branch is present, and</li>
  4219  	<li>both branches are terminating statements.</li>
  4220  	</ul>
  4221  </li>
  4222  
  4223  <li>
  4224  	A <a href="#For_statements">"for" statement</a> in which:
  4225  	<ul>
  4226  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4227  	<li>the loop condition is absent.</li>
  4228  	</ul>
  4229  </li>
  4230  
  4231  <li>
  4232  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4233  	<ul>
  4234  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4235  	<li>there is a default case, and</li>
  4236  	<li>the statement lists in each case, including the default, end in a terminating
  4237  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4238  	    statement</a>.</li>
  4239  	</ul>
  4240  </li>
  4241  
  4242  <li>
  4243  	A <a href="#Select_statements">"select" statement</a> in which:
  4244  	<ul>
  4245  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4246  	<li>the statement lists in each case, including the default if present,
  4247  	    end in a terminating statement.</li>
  4248  	</ul>
  4249  </li>
  4250  
  4251  <li>
  4252  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4253  	a terminating statement.
  4254  </li>
  4255  </ol>
  4256  
  4257  <p>
  4258  All other statements are not terminating.
  4259  </p>
  4260  
  4261  <p>
  4262  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4263  is not empty and its final statement is terminating.
  4264  </p>
  4265  
  4266  
  4267  <h3 id="Empty_statements">Empty statements</h3>
  4268  
  4269  <p>
  4270  The empty statement does nothing.
  4271  </p>
  4272  
  4273  <pre class="ebnf">
  4274  EmptyStmt = .
  4275  </pre>
  4276  
  4277  
  4278  <h3 id="Labeled_statements">Labeled statements</h3>
  4279  
  4280  <p>
  4281  A labeled statement may be the target of a <code>goto</code>,
  4282  <code>break</code> or <code>continue</code> statement.
  4283  </p>
  4284  
  4285  <pre class="ebnf">
  4286  LabeledStmt = Label ":" Statement .
  4287  Label       = identifier .
  4288  </pre>
  4289  
  4290  <pre>
  4291  Error: log.Panic("error encountered")
  4292  </pre>
  4293  
  4294  
  4295  <h3 id="Expression_statements">Expression statements</h3>
  4296  
  4297  <p>
  4298  With the exception of specific built-in functions,
  4299  function and method <a href="#Calls">calls</a> and
  4300  <a href="#Receive_operator">receive operations</a>
  4301  can appear in statement context. Such statements may be parenthesized.
  4302  </p>
  4303  
  4304  <pre class="ebnf">
  4305  ExpressionStmt = Expression .
  4306  </pre>
  4307  
  4308  <p>
  4309  The following built-in functions are not permitted in statement context:
  4310  </p>
  4311  
  4312  <pre>
  4313  append cap complex imag len make new real
  4314  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4315  </pre>
  4316  
  4317  <pre>
  4318  h(x+y)
  4319  f.Close()
  4320  &lt;-ch
  4321  (&lt;-ch)
  4322  len("foo")  // illegal if len is the built-in function
  4323  </pre>
  4324  
  4325  
  4326  <h3 id="Send_statements">Send statements</h3>
  4327  
  4328  <p>
  4329  A send statement sends a value on a channel.
  4330  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4331  the channel direction must permit send operations,
  4332  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4333  to the channel's element type.
  4334  </p>
  4335  
  4336  <pre class="ebnf">
  4337  SendStmt = Channel "&lt;-" Expression .
  4338  Channel  = Expression .
  4339  </pre>
  4340  
  4341  <p>
  4342  Both the channel and the value expression are evaluated before communication
  4343  begins. Communication blocks until the send can proceed.
  4344  A send on an unbuffered channel can proceed if a receiver is ready.
  4345  A send on a buffered channel can proceed if there is room in the buffer.
  4346  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4347  A send on a <code>nil</code> channel blocks forever.
  4348  </p>
  4349  
  4350  <pre>
  4351  ch &lt;- 3  // send value 3 to channel ch
  4352  </pre>
  4353  
  4354  
  4355  <h3 id="IncDec_statements">IncDec statements</h3>
  4356  
  4357  <p>
  4358  The "++" and "--" statements increment or decrement their operands
  4359  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4360  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4361  or a map index expression.
  4362  </p>
  4363  
  4364  <pre class="ebnf">
  4365  IncDecStmt = Expression ( "++" | "--" ) .
  4366  </pre>
  4367  
  4368  <p>
  4369  The following <a href="#Assignments">assignment statements</a> are semantically
  4370  equivalent:
  4371  </p>
  4372  
  4373  <pre class="grammar">
  4374  IncDec statement    Assignment
  4375  x++                 x += 1
  4376  x--                 x -= 1
  4377  </pre>
  4378  
  4379  
  4380  <h3 id="Assignments">Assignments</h3>
  4381  
  4382  <pre class="ebnf">
  4383  Assignment = ExpressionList assign_op ExpressionList .
  4384  
  4385  assign_op = [ add_op | mul_op ] "=" .
  4386  </pre>
  4387  
  4388  <p>
  4389  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4390  a map index expression, or (for <code>=</code> assignments only) the
  4391  <a href="#Blank_identifier">blank identifier</a>.
  4392  Operands may be parenthesized.
  4393  </p>
  4394  
  4395  <pre>
  4396  x = 1
  4397  *p = f()
  4398  a[i] = 23
  4399  (k) = &lt;-ch  // same as: k = &lt;-ch
  4400  </pre>
  4401  
  4402  <p>
  4403  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4404  <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
  4405  to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4406  <code>y</code> but evaluates <code>x</code>
  4407  only once.  The <i>op</i><code>=</code> construct is a single token.
  4408  In assignment operations, both the left- and right-hand expression lists
  4409  must contain exactly one single-valued expression, and the left-hand
  4410  expression must not be the blank identifier.
  4411  </p>
  4412  
  4413  <pre>
  4414  a[i] &lt;&lt;= 2
  4415  i &amp;^= 1&lt;&lt;n
  4416  </pre>
  4417  
  4418  <p>
  4419  A tuple assignment assigns the individual elements of a multi-valued
  4420  operation to a list of variables.  There are two forms.  In the
  4421  first, the right hand operand is a single multi-valued expression
  4422  such as a function call, a <a href="#Channel_types">channel</a> or
  4423  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4424  The number of operands on the left
  4425  hand side must match the number of values.  For instance, if
  4426  <code>f</code> is a function returning two values,
  4427  </p>
  4428  
  4429  <pre>
  4430  x, y = f()
  4431  </pre>
  4432  
  4433  <p>
  4434  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4435  In the second form, the number of operands on the left must equal the number
  4436  of expressions on the right, each of which must be single-valued, and the
  4437  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4438  operand on the left:
  4439  </p>
  4440  
  4441  <pre>
  4442  one, two, three = '一', '二', '三'
  4443  </pre>
  4444  
  4445  <p>
  4446  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4447  ignore right-hand side values in an assignment:
  4448  </p>
  4449  
  4450  <pre>
  4451  _ = x       // evaluate x but ignore it
  4452  x, _ = f()  // evaluate f() but ignore second result value
  4453  </pre>
  4454  
  4455  <p>
  4456  The assignment proceeds in two phases.
  4457  First, the operands of <a href="#Index_expressions">index expressions</a>
  4458  and <a href="#Address_operators">pointer indirections</a>
  4459  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4460  on the left and the expressions on the right are all
  4461  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4462  Second, the assignments are carried out in left-to-right order.
  4463  </p>
  4464  
  4465  <pre>
  4466  a, b = b, a  // exchange a and b
  4467  
  4468  x := []int{1, 2, 3}
  4469  i := 0
  4470  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4471  
  4472  i = 0
  4473  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4474  
  4475  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4476  
  4477  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4478  
  4479  type Point struct { x, y int }
  4480  var p *Point
  4481  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4482  
  4483  i = 2
  4484  x = []int{3, 5, 7}
  4485  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4486  	break
  4487  }
  4488  // after this loop, i == 0 and x == []int{3, 5, 3}
  4489  </pre>
  4490  
  4491  <p>
  4492  In assignments, each value must be <a href="#Assignability">assignable</a>
  4493  to the type of the operand to which it is assigned, with the following special cases:
  4494  </p>
  4495  
  4496  <ol>
  4497  <li>
  4498  	Any typed value may be assigned to the blank identifier.
  4499  </li>
  4500  
  4501  <li>
  4502  	If an untyped constant
  4503  	is assigned to a variable of interface type or the blank identifier,
  4504  	the constant is first <a href="#Conversions">converted</a> to its
  4505  	 <a href="#Constants">default type</a>.
  4506  </li>
  4507  
  4508  <li>
  4509  	If an untyped boolean value is assigned to a variable of interface type or
  4510  	the blank identifier, it is first converted to type <code>bool</code>.
  4511  </li>
  4512  </ol>
  4513  
  4514  <h3 id="If_statements">If statements</h3>
  4515  
  4516  <p>
  4517  "If" statements specify the conditional execution of two branches
  4518  according to the value of a boolean expression.  If the expression
  4519  evaluates to true, the "if" branch is executed, otherwise, if
  4520  present, the "else" branch is executed.
  4521  </p>
  4522  
  4523  <pre class="ebnf">
  4524  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4525  </pre>
  4526  
  4527  <pre>
  4528  if x &gt; max {
  4529  	x = max
  4530  }
  4531  </pre>
  4532  
  4533  <p>
  4534  The expression may be preceded by a simple statement, which
  4535  executes before the expression is evaluated.
  4536  </p>
  4537  
  4538  <pre>
  4539  if x := f(); x &lt; y {
  4540  	return x
  4541  } else if x &gt; z {
  4542  	return z
  4543  } else {
  4544  	return y
  4545  }
  4546  </pre>
  4547  
  4548  
  4549  <h3 id="Switch_statements">Switch statements</h3>
  4550  
  4551  <p>
  4552  "Switch" statements provide multi-way execution.
  4553  An expression or type specifier is compared to the "cases"
  4554  inside the "switch" to determine which branch
  4555  to execute.
  4556  </p>
  4557  
  4558  <pre class="ebnf">
  4559  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4560  </pre>
  4561  
  4562  <p>
  4563  There are two forms: expression switches and type switches.
  4564  In an expression switch, the cases contain expressions that are compared
  4565  against the value of the switch expression.
  4566  In a type switch, the cases contain types that are compared against the
  4567  type of a specially annotated switch expression.
  4568  </p>
  4569  
  4570  <h4 id="Expression_switches">Expression switches</h4>
  4571  
  4572  <p>
  4573  In an expression switch,
  4574  the switch expression is evaluated and
  4575  the case expressions, which need not be constants,
  4576  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4577  switch expression
  4578  triggers execution of the statements of the associated case;
  4579  the other cases are skipped.
  4580  If no case matches and there is a "default" case,
  4581  its statements are executed.
  4582  There can be at most one default case and it may appear anywhere in the
  4583  "switch" statement.
  4584  A missing switch expression is equivalent to the boolean value
  4585  <code>true</code>.
  4586  </p>
  4587  
  4588  <pre class="ebnf">
  4589  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4590  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4591  ExprSwitchCase = "case" ExpressionList | "default" .
  4592  </pre>
  4593  
  4594  <p>
  4595  In a case or default clause, the last non-empty statement
  4596  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4597  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4598  indicate that control should flow from the end of this clause to
  4599  the first statement of the next clause.
  4600  Otherwise control flows to the end of the "switch" statement.
  4601  A "fallthrough" statement may appear as the last statement of all
  4602  but the last clause of an expression switch.
  4603  </p>
  4604  
  4605  <p>
  4606  The expression may be preceded by a simple statement, which
  4607  executes before the expression is evaluated.
  4608  </p>
  4609  
  4610  <pre>
  4611  switch tag {
  4612  default: s3()
  4613  case 0, 1, 2, 3: s1()
  4614  case 4, 5, 6, 7: s2()
  4615  }
  4616  
  4617  switch x := f(); {  // missing switch expression means "true"
  4618  case x &lt; 0: return -x
  4619  default: return x
  4620  }
  4621  
  4622  switch {
  4623  case x &lt; y: f1()
  4624  case x &lt; z: f2()
  4625  case x == 4: f3()
  4626  }
  4627  </pre>
  4628  
  4629  <h4 id="Type_switches">Type switches</h4>
  4630  
  4631  <p>
  4632  A type switch compares types rather than values. It is otherwise similar
  4633  to an expression switch. It is marked by a special switch expression that
  4634  has the form of a <a href="#Type_assertions">type assertion</a>
  4635  using the reserved word <code>type</code> rather than an actual type:
  4636  </p>
  4637  
  4638  <pre>
  4639  switch x.(type) {
  4640  // cases
  4641  }
  4642  </pre>
  4643  
  4644  <p>
  4645  Cases then match actual types <code>T</code> against the dynamic type of the
  4646  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4647  <a href="#Interface_types">interface type</a>, and each non-interface type
  4648  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4649  </p>
  4650  
  4651  <pre class="ebnf">
  4652  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4653  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4654  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4655  TypeSwitchCase  = "case" TypeList | "default" .
  4656  TypeList        = Type { "," Type } .
  4657  </pre>
  4658  
  4659  <p>
  4660  The TypeSwitchGuard may include a
  4661  <a href="#Short_variable_declarations">short variable declaration</a>.
  4662  When that form is used, the variable is declared at the beginning of
  4663  the <a href="#Blocks">implicit block</a> in each clause.
  4664  In clauses with a case listing exactly one type, the variable
  4665  has that type; otherwise, the variable has the type of the expression
  4666  in the TypeSwitchGuard.
  4667  </p>
  4668  
  4669  <p>
  4670  The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4671  that case is used when the expression in the TypeSwitchGuard
  4672  is a <code>nil</code> interface value.
  4673  </p>
  4674  
  4675  <p>
  4676  Given an expression <code>x</code> of type <code>interface{}</code>,
  4677  the following type switch:
  4678  </p>
  4679  
  4680  <pre>
  4681  switch i := x.(type) {
  4682  case nil:
  4683  	printString("x is nil")                // type of i is type of x (interface{})
  4684  case int:
  4685  	printInt(i)                            // type of i is int
  4686  case float64:
  4687  	printFloat64(i)                        // type of i is float64
  4688  case func(int) float64:
  4689  	printFunction(i)                       // type of i is func(int) float64
  4690  case bool, string:
  4691  	printString("type is bool or string")  // type of i is type of x (interface{})
  4692  default:
  4693  	printString("don't know the type")     // type of i is type of x (interface{})
  4694  }
  4695  </pre>
  4696  
  4697  <p>
  4698  could be rewritten:
  4699  </p>
  4700  
  4701  <pre>
  4702  v := x  // x is evaluated exactly once
  4703  if v == nil {
  4704  	i := v                                 // type of i is type of x (interface{})
  4705  	printString("x is nil")
  4706  } else if i, isInt := v.(int); isInt {
  4707  	printInt(i)                            // type of i is int
  4708  } else if i, isFloat64 := v.(float64); isFloat64 {
  4709  	printFloat64(i)                        // type of i is float64
  4710  } else if i, isFunc := v.(func(int) float64); isFunc {
  4711  	printFunction(i)                       // type of i is func(int) float64
  4712  } else {
  4713  	_, isBool := v.(bool)
  4714  	_, isString := v.(string)
  4715  	if isBool || isString {
  4716  		i := v                         // type of i is type of x (interface{})
  4717  		printString("type is bool or string")
  4718  	} else {
  4719  		i := v                         // type of i is type of x (interface{})
  4720  		printString("don't know the type")
  4721  	}
  4722  }
  4723  </pre>
  4724  
  4725  <p>
  4726  The type switch guard may be preceded by a simple statement, which
  4727  executes before the guard is evaluated.
  4728  </p>
  4729  
  4730  <p>
  4731  The "fallthrough" statement is not permitted in a type switch.
  4732  </p>
  4733  
  4734  <h3 id="For_statements">For statements</h3>
  4735  
  4736  <p>
  4737  A "for" statement specifies repeated execution of a block. The iteration is
  4738  controlled by a condition, a "for" clause, or a "range" clause.
  4739  </p>
  4740  
  4741  <pre class="ebnf">
  4742  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4743  Condition = Expression .
  4744  </pre>
  4745  
  4746  <p>
  4747  In its simplest form, a "for" statement specifies the repeated execution of
  4748  a block as long as a boolean condition evaluates to true.
  4749  The condition is evaluated before each iteration.
  4750  If the condition is absent, it is equivalent to the boolean value
  4751  <code>true</code>.
  4752  </p>
  4753  
  4754  <pre>
  4755  for a &lt; b {
  4756  	a *= 2
  4757  }
  4758  </pre>
  4759  
  4760  <p>
  4761  A "for" statement with a ForClause is also controlled by its condition, but
  4762  additionally it may specify an <i>init</i>
  4763  and a <i>post</i> statement, such as an assignment,
  4764  an increment or decrement statement. The init statement may be a
  4765  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4766  Variables declared by the init statement are re-used in each iteration.
  4767  </p>
  4768  
  4769  <pre class="ebnf">
  4770  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4771  InitStmt = SimpleStmt .
  4772  PostStmt = SimpleStmt .
  4773  </pre>
  4774  
  4775  <pre>
  4776  for i := 0; i &lt; 10; i++ {
  4777  	f(i)
  4778  }
  4779  </pre>
  4780  
  4781  <p>
  4782  If non-empty, the init statement is executed once before evaluating the
  4783  condition for the first iteration;
  4784  the post statement is executed after each execution of the block (and
  4785  only if the block was executed).
  4786  Any element of the ForClause may be empty but the
  4787  <a href="#Semicolons">semicolons</a> are
  4788  required unless there is only a condition.
  4789  If the condition is absent, it is equivalent to the boolean value
  4790  <code>true</code>.
  4791  </p>
  4792  
  4793  <pre>
  4794  for cond { S() }    is the same as    for ; cond ; { S() }
  4795  for      { S() }    is the same as    for true     { S() }
  4796  </pre>
  4797  
  4798  <p>
  4799  A "for" statement with a "range" clause
  4800  iterates through all entries of an array, slice, string or map,
  4801  or values received on a channel. For each entry it assigns <i>iteration values</i>
  4802  to corresponding <i>iteration variables</i> if present and then executes the block.
  4803  </p>
  4804  
  4805  <pre class="ebnf">
  4806  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  4807  </pre>
  4808  
  4809  <p>
  4810  The expression on the right in the "range" clause is called the <i>range expression</i>,
  4811  which may be an array, pointer to an array, slice, string, map, or channel permitting
  4812  <a href="#Receive_operator">receive operations</a>.
  4813  As with an assignment, if present the operands on the left must be
  4814  <a href="#Address_operators">addressable</a> or map index expressions; they
  4815  denote the iteration variables. If the range expression is a channel, at most
  4816  one iteration variable is permitted, otherwise there may be up to two.
  4817  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  4818  the range clause is equivalent to the same clause without that identifier.
  4819  </p>
  4820  
  4821  <p>
  4822  The range expression is evaluated once before beginning the loop,
  4823  with one exception: if the range expression is an array or a pointer to an array
  4824  and at most one iteration variable is present, only the range expression's
  4825  length is evaluated; if that length is constant,
  4826  <a href="#Length_and_capacity">by definition</a>
  4827  the range expression itself will not be evaluated.
  4828  </p>
  4829  
  4830  <p>
  4831  Function calls on the left are evaluated once per iteration.
  4832  For each iteration, iteration values are produced as follows
  4833  if the respective iteration variables are present:
  4834  </p>
  4835  
  4836  <pre class="grammar">
  4837  Range expression                          1st value          2nd value
  4838  
  4839  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  4840  string          s  string type            index    i  int    see below  rune
  4841  map             m  map[K]V                key      k  K      m[k]       V
  4842  channel         c  chan E, &lt;-chan E       element  e  E
  4843  </pre>
  4844  
  4845  <ol>
  4846  <li>
  4847  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  4848  values are produced in increasing order, starting at element index 0.
  4849  If at most one iteration variable is present, the range loop produces
  4850  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  4851  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  4852  </li>
  4853  
  4854  <li>
  4855  For a string value, the "range" clause iterates over the Unicode code points
  4856  in the string starting at byte index 0.  On successive iterations, the index value will be the
  4857  index of the first byte of successive UTF-8-encoded code points in the string,
  4858  and the second value, of type <code>rune</code>, will be the value of
  4859  the corresponding code point.  If the iteration encounters an invalid
  4860  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  4861  the Unicode replacement character, and the next iteration will advance
  4862  a single byte in the string.
  4863  </li>
  4864  
  4865  <li>
  4866  The iteration order over maps is not specified
  4867  and is not guaranteed to be the same from one iteration to the next.
  4868  If map entries that have not yet been reached are removed during iteration,
  4869  the corresponding iteration values will not be produced. If map entries are
  4870  created during iteration, that entry may be produced during the iteration or
  4871  may be skipped. The choice may vary for each entry created and from one
  4872  iteration to the next.
  4873  If the map is <code>nil</code>, the number of iterations is 0.
  4874  </li>
  4875  
  4876  <li>
  4877  For channels, the iteration values produced are the successive values sent on
  4878  the channel until the channel is <a href="#Close">closed</a>. If the channel
  4879  is <code>nil</code>, the range expression blocks forever.
  4880  </li>
  4881  </ol>
  4882  
  4883  <p>
  4884  The iteration values are assigned to the respective
  4885  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  4886  </p>
  4887  
  4888  <p>
  4889  The iteration variables may be declared by the "range" clause using a form of
  4890  <a href="#Short_variable_declarations">short variable declaration</a>
  4891  (<code>:=</code>).
  4892  In this case their types are set to the types of the respective iteration values
  4893  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  4894  statement; they are re-used in each iteration.
  4895  If the iteration variables are declared outside the "for" statement,
  4896  after execution their values will be those of the last iteration.
  4897  </p>
  4898  
  4899  <pre>
  4900  var testdata *struct {
  4901  	a *[7]int
  4902  }
  4903  for i, _ := range testdata.a {
  4904  	// testdata.a is never evaluated; len(testdata.a) is constant
  4905  	// i ranges from 0 to 6
  4906  	f(i)
  4907  }
  4908  
  4909  var a [10]string
  4910  for i, s := range a {
  4911  	// type of i is int
  4912  	// type of s is string
  4913  	// s == a[i]
  4914  	g(i, s)
  4915  }
  4916  
  4917  var key string
  4918  var val interface {}  // value type of m is assignable to val
  4919  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  4920  for key, val = range m {
  4921  	h(key, val)
  4922  }
  4923  // key == last map key encountered in iteration
  4924  // val == map[key]
  4925  
  4926  var ch chan Work = producer()
  4927  for w := range ch {
  4928  	doWork(w)
  4929  }
  4930  
  4931  // empty a channel
  4932  for range ch {}
  4933  </pre>
  4934  
  4935  
  4936  <h3 id="Go_statements">Go statements</h3>
  4937  
  4938  <p>
  4939  A "go" statement starts the execution of a function call
  4940  as an independent concurrent thread of control, or <i>goroutine</i>,
  4941  within the same address space.
  4942  </p>
  4943  
  4944  <pre class="ebnf">
  4945  GoStmt = "go" Expression .
  4946  </pre>
  4947  
  4948  <p>
  4949  The expression must be a function or method call; it cannot be parenthesized.
  4950  Calls of built-in functions are restricted as for
  4951  <a href="#Expression_statements">expression statements</a>.
  4952  </p>
  4953  
  4954  <p>
  4955  The function value and parameters are
  4956  <a href="#Calls">evaluated as usual</a>
  4957  in the calling goroutine, but
  4958  unlike with a regular call, program execution does not wait
  4959  for the invoked function to complete.
  4960  Instead, the function begins executing independently
  4961  in a new goroutine.
  4962  When the function terminates, its goroutine also terminates.
  4963  If the function has any return values, they are discarded when the
  4964  function completes.
  4965  </p>
  4966  
  4967  <pre>
  4968  go Server()
  4969  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
  4970  </pre>
  4971  
  4972  
  4973  <h3 id="Select_statements">Select statements</h3>
  4974  
  4975  <p>
  4976  A "select" statement chooses which of a set of possible
  4977  <a href="#Send_statements">send</a> or
  4978  <a href="#Receive_operator">receive</a>
  4979  operations will proceed.
  4980  It looks similar to a
  4981  <a href="#Switch_statements">"switch"</a> statement but with the
  4982  cases all referring to communication operations.
  4983  </p>
  4984  
  4985  <pre class="ebnf">
  4986  SelectStmt = "select" "{" { CommClause } "}" .
  4987  CommClause = CommCase ":" StatementList .
  4988  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  4989  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  4990  RecvExpr   = Expression .
  4991  </pre>
  4992  
  4993  <p>
  4994  A case with a RecvStmt may assign the result of a RecvExpr to one or
  4995  two variables, which may be declared using a
  4996  <a href="#Short_variable_declarations">short variable declaration</a>.
  4997  The RecvExpr must be a (possibly parenthesized) receive operation.
  4998  There can be at most one default case and it may appear anywhere
  4999  in the list of cases.
  5000  </p>
  5001  
  5002  <p>
  5003  Execution of a "select" statement proceeds in several steps:
  5004  </p>
  5005  
  5006  <ol>
  5007  <li>
  5008  For all the cases in the statement, the channel operands of receive operations
  5009  and the channel and right-hand-side expressions of send statements are
  5010  evaluated exactly once, in source order, upon entering the "select" statement.
  5011  The result is a set of channels to receive from or send to,
  5012  and the corresponding values to send.
  5013  Any side effects in that evaluation will occur irrespective of which (if any)
  5014  communication operation is selected to proceed.
  5015  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  5016  or assignment are not yet evaluated.
  5017  </li>
  5018  
  5019  <li>
  5020  If one or more of the communications can proceed,
  5021  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5022  Otherwise, if there is a default case, that case is chosen.
  5023  If there is no default case, the "select" statement blocks until
  5024  at least one of the communications can proceed.
  5025  </li>
  5026  
  5027  <li>
  5028  Unless the selected case is the default case, the respective communication
  5029  operation is executed.
  5030  </li>
  5031  
  5032  <li>
  5033  If the selected case is a RecvStmt with a short variable declaration or
  5034  an assignment, the left-hand side expressions are evaluated and the
  5035  received value (or values) are assigned.
  5036  </li>
  5037  
  5038  <li>
  5039  The statement list of the selected case is executed.
  5040  </li>
  5041  </ol>
  5042  
  5043  <p>
  5044  Since communication on <code>nil</code> channels can never proceed,
  5045  a select with only <code>nil</code> channels and no default case blocks forever.
  5046  </p>
  5047  
  5048  <pre>
  5049  var a []int
  5050  var c, c1, c2, c3, c4 chan int
  5051  var i1, i2 int
  5052  select {
  5053  case i1 = &lt;-c1:
  5054  	print("received ", i1, " from c1\n")
  5055  case c2 &lt;- i2:
  5056  	print("sent ", i2, " to c2\n")
  5057  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5058  	if ok {
  5059  		print("received ", i3, " from c3\n")
  5060  	} else {
  5061  		print("c3 is closed\n")
  5062  	}
  5063  case a[f()] = &lt;-c4:
  5064  	// same as:
  5065  	// case t := &lt;-c4
  5066  	//	a[f()] = t
  5067  default:
  5068  	print("no communication\n")
  5069  }
  5070  
  5071  for {  // send random sequence of bits to c
  5072  	select {
  5073  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5074  	case c &lt;- 1:
  5075  	}
  5076  }
  5077  
  5078  select {}  // block forever
  5079  </pre>
  5080  
  5081  
  5082  <h3 id="Return_statements">Return statements</h3>
  5083  
  5084  <p>
  5085  A "return" statement in a function <code>F</code> terminates the execution
  5086  of <code>F</code>, and optionally provides one or more result values.
  5087  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5088  are executed before <code>F</code> returns to its caller.
  5089  </p>
  5090  
  5091  <pre class="ebnf">
  5092  ReturnStmt = "return" [ ExpressionList ] .
  5093  </pre>
  5094  
  5095  <p>
  5096  In a function without a result type, a "return" statement must not
  5097  specify any result values.
  5098  </p>
  5099  <pre>
  5100  func noResult() {
  5101  	return
  5102  }
  5103  </pre>
  5104  
  5105  <p>
  5106  There are three ways to return values from a function with a result
  5107  type:
  5108  </p>
  5109  
  5110  <ol>
  5111  	<li>The return value or values may be explicitly listed
  5112  		in the "return" statement. Each expression must be single-valued
  5113  		and <a href="#Assignability">assignable</a>
  5114  		to the corresponding element of the function's result type.
  5115  <pre>
  5116  func simpleF() int {
  5117  	return 2
  5118  }
  5119  
  5120  func complexF1() (re float64, im float64) {
  5121  	return -7.0, -4.0
  5122  }
  5123  </pre>
  5124  	</li>
  5125  	<li>The expression list in the "return" statement may be a single
  5126  		call to a multi-valued function. The effect is as if each value
  5127  		returned from that function were assigned to a temporary
  5128  		variable with the type of the respective value, followed by a
  5129  		"return" statement listing these variables, at which point the
  5130  		rules of the previous case apply.
  5131  <pre>
  5132  func complexF2() (re float64, im float64) {
  5133  	return complexF1()
  5134  }
  5135  </pre>
  5136  	</li>
  5137  	<li>The expression list may be empty if the function's result
  5138  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5139  		The result parameters act as ordinary local variables
  5140  		and the function may assign values to them as necessary.
  5141  		The "return" statement returns the values of these variables.
  5142  <pre>
  5143  func complexF3() (re float64, im float64) {
  5144  	re = 7.0
  5145  	im = 4.0
  5146  	return
  5147  }
  5148  
  5149  func (devnull) Write(p []byte) (n int, _ error) {
  5150  	n = len(p)
  5151  	return
  5152  }
  5153  </pre>
  5154  	</li>
  5155  </ol>
  5156  
  5157  <p>
  5158  Regardless of how they are declared, all the result values are initialized to
  5159  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5160  function. A "return" statement that specifies results sets the result parameters before
  5161  any deferred functions are executed.
  5162  </p>
  5163  
  5164  <p>
  5165  Implementation restriction: A compiler may disallow an empty expression list
  5166  in a "return" statement if a different entity (constant, type, or variable)
  5167  with the same name as a result parameter is in
  5168  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5169  </p>
  5170  
  5171  <pre>
  5172  func f(n int) (res int, err error) {
  5173  	if _, err := f(n-1); err != nil {
  5174  		return  // invalid return statement: err is shadowed
  5175  	}
  5176  	return
  5177  }
  5178  </pre>
  5179  
  5180  <h3 id="Break_statements">Break statements</h3>
  5181  
  5182  <p>
  5183  A "break" statement terminates execution of the innermost
  5184  <a href="#For_statements">"for"</a>,
  5185  <a href="#Switch_statements">"switch"</a>, or
  5186  <a href="#Select_statements">"select"</a> statement
  5187  within the same function.
  5188  </p>
  5189  
  5190  <pre class="ebnf">
  5191  BreakStmt = "break" [ Label ] .
  5192  </pre>
  5193  
  5194  <p>
  5195  If there is a label, it must be that of an enclosing
  5196  "for", "switch", or "select" statement,
  5197  and that is the one whose execution terminates.
  5198  </p>
  5199  
  5200  <pre>
  5201  OuterLoop:
  5202  	for i = 0; i &lt; n; i++ {
  5203  		for j = 0; j &lt; m; j++ {
  5204  			switch a[i][j] {
  5205  			case nil:
  5206  				state = Error
  5207  				break OuterLoop
  5208  			case item:
  5209  				state = Found
  5210  				break OuterLoop
  5211  			}
  5212  		}
  5213  	}
  5214  </pre>
  5215  
  5216  <h3 id="Continue_statements">Continue statements</h3>
  5217  
  5218  <p>
  5219  A "continue" statement begins the next iteration of the
  5220  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5221  The "for" loop must be within the same function.
  5222  </p>
  5223  
  5224  <pre class="ebnf">
  5225  ContinueStmt = "continue" [ Label ] .
  5226  </pre>
  5227  
  5228  <p>
  5229  If there is a label, it must be that of an enclosing
  5230  "for" statement, and that is the one whose execution
  5231  advances.
  5232  </p>
  5233  
  5234  <pre>
  5235  RowLoop:
  5236  	for y, row := range rows {
  5237  		for x, data := range row {
  5238  			if data == endOfRow {
  5239  				continue RowLoop
  5240  			}
  5241  			row[x] = data + bias(x, y)
  5242  		}
  5243  	}
  5244  </pre>
  5245  
  5246  <h3 id="Goto_statements">Goto statements</h3>
  5247  
  5248  <p>
  5249  A "goto" statement transfers control to the statement with the corresponding label
  5250  within the same function.
  5251  </p>
  5252  
  5253  <pre class="ebnf">
  5254  GotoStmt = "goto" Label .
  5255  </pre>
  5256  
  5257  <pre>
  5258  goto Error
  5259  </pre>
  5260  
  5261  <p>
  5262  Executing the "goto" statement must not cause any variables to come into
  5263  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5264  For instance, this example:
  5265  </p>
  5266  
  5267  <pre>
  5268  	goto L  // BAD
  5269  	v := 3
  5270  L:
  5271  </pre>
  5272  
  5273  <p>
  5274  is erroneous because the jump to label <code>L</code> skips
  5275  the creation of <code>v</code>.
  5276  </p>
  5277  
  5278  <p>
  5279  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5280  For instance, this example:
  5281  </p>
  5282  
  5283  <pre>
  5284  if n%2 == 1 {
  5285  	goto L1
  5286  }
  5287  for n &gt; 0 {
  5288  	f()
  5289  	n--
  5290  L1:
  5291  	f()
  5292  	n--
  5293  }
  5294  </pre>
  5295  
  5296  <p>
  5297  is erroneous because the label <code>L1</code> is inside
  5298  the "for" statement's block but the <code>goto</code> is not.
  5299  </p>
  5300  
  5301  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5302  
  5303  <p>
  5304  A "fallthrough" statement transfers control to the first statement of the
  5305  next case clause in a <a href="#Expression_switches">expression "switch" statement</a>.
  5306  It may be used only as the final non-empty statement in such a clause.
  5307  </p>
  5308  
  5309  <pre class="ebnf">
  5310  FallthroughStmt = "fallthrough" .
  5311  </pre>
  5312  
  5313  
  5314  <h3 id="Defer_statements">Defer statements</h3>
  5315  
  5316  <p>
  5317  A "defer" statement invokes a function whose execution is deferred
  5318  to the moment the surrounding function returns, either because the
  5319  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5320  reached the end of its <a href="#Function_declarations">function body</a>,
  5321  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5322  </p>
  5323  
  5324  <pre class="ebnf">
  5325  DeferStmt = "defer" Expression .
  5326  </pre>
  5327  
  5328  <p>
  5329  The expression must be a function or method call; it cannot be parenthesized.
  5330  Calls of built-in functions are restricted as for
  5331  <a href="#Expression_statements">expression statements</a>.
  5332  </p>
  5333  
  5334  <p>
  5335  Each time a "defer" statement
  5336  executes, the function value and parameters to the call are
  5337  <a href="#Calls">evaluated as usual</a>
  5338  and saved anew but the actual function is not invoked.
  5339  Instead, deferred functions are invoked immediately before
  5340  the surrounding function returns, in the reverse order
  5341  they were deferred.
  5342  If a deferred function value evaluates
  5343  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5344  when the function is invoked, not when the "defer" statement is executed.
  5345  </p>
  5346  
  5347  <p>
  5348  For instance, if the deferred function is
  5349  a <a href="#Function_literals">function literal</a> and the surrounding
  5350  function has <a href="#Function_types">named result parameters</a> that
  5351  are in scope within the literal, the deferred function may access and modify
  5352  the result parameters before they are returned.
  5353  If the deferred function has any return values, they are discarded when
  5354  the function completes.
  5355  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5356  </p>
  5357  
  5358  <pre>
  5359  lock(l)
  5360  defer unlock(l)  // unlocking happens before surrounding function returns
  5361  
  5362  // prints 3 2 1 0 before surrounding function returns
  5363  for i := 0; i &lt;= 3; i++ {
  5364  	defer fmt.Print(i)
  5365  }
  5366  
  5367  // f returns 1
  5368  func f() (result int) {
  5369  	defer func() {
  5370  		result++
  5371  	}()
  5372  	return 0
  5373  }
  5374  </pre>
  5375  
  5376  <h2 id="Built-in_functions">Built-in functions</h2>
  5377  
  5378  <p>
  5379  Built-in functions are
  5380  <a href="#Predeclared_identifiers">predeclared</a>.
  5381  They are called like any other function but some of them
  5382  accept a type instead of an expression as the first argument.
  5383  </p>
  5384  
  5385  <p>
  5386  The built-in functions do not have standard Go types,
  5387  so they can only appear in <a href="#Calls">call expressions</a>;
  5388  they cannot be used as function values.
  5389  </p>
  5390  
  5391  <h3 id="Close">Close</h3>
  5392  
  5393  <p>
  5394  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5395  records that no more values will be sent on the channel.
  5396  It is an error if <code>c</code> is a receive-only channel.
  5397  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5398  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5399  After calling <code>close</code>, and after any previously
  5400  sent values have been received, receive operations will return
  5401  the zero value for the channel's type without blocking.
  5402  The multi-valued <a href="#Receive_operator">receive operation</a>
  5403  returns a received value along with an indication of whether the channel is closed.
  5404  </p>
  5405  
  5406  
  5407  <h3 id="Length_and_capacity">Length and capacity</h3>
  5408  
  5409  <p>
  5410  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5411  of various types and return a result of type <code>int</code>.
  5412  The implementation guarantees that the result always fits into an <code>int</code>.
  5413  </p>
  5414  
  5415  <pre class="grammar">
  5416  Call      Argument type    Result
  5417  
  5418  len(s)    string type      string length in bytes
  5419            [n]T, *[n]T      array length (== n)
  5420            []T              slice length
  5421            map[K]T          map length (number of defined keys)
  5422            chan T           number of elements queued in channel buffer
  5423  
  5424  cap(s)    [n]T, *[n]T      array length (== n)
  5425            []T              slice capacity
  5426            chan T           channel buffer capacity
  5427  </pre>
  5428  
  5429  <p>
  5430  The capacity of a slice is the number of elements for which there is
  5431  space allocated in the underlying array.
  5432  At any time the following relationship holds:
  5433  </p>
  5434  
  5435  <pre>
  5436  0 &lt;= len(s) &lt;= cap(s)
  5437  </pre>
  5438  
  5439  <p>
  5440  The length of a <code>nil</code> slice, map or channel is 0.
  5441  The capacity of a <code>nil</code> slice or channel is 0.
  5442  </p>
  5443  
  5444  <p>
  5445  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5446  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5447  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5448  or pointer to an array and the expression <code>s</code> does not contain
  5449  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5450  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5451  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5452  constant and <code>s</code> is evaluated.
  5453  </p>
  5454  
  5455  <pre>
  5456  const (
  5457  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5458  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5459  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5460  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5461  	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
  5462  )
  5463  var z complex128
  5464  </pre>
  5465  
  5466  <h3 id="Allocation">Allocation</h3>
  5467  
  5468  <p>
  5469  The built-in function <code>new</code> takes a type <code>T</code>,
  5470  allocates storage for a <a href="#Variables">variable</a> of that type
  5471  at run time, and returns a value of type <code>*T</code>
  5472  <a href="#Pointer_types">pointing</a> to it.
  5473  The variable is initialized as described in the section on
  5474  <a href="#The_zero_value">initial values</a>.
  5475  </p>
  5476  
  5477  <pre class="grammar">
  5478  new(T)
  5479  </pre>
  5480  
  5481  <p>
  5482  For instance
  5483  </p>
  5484  
  5485  <pre>
  5486  type S struct { a int; b float64 }
  5487  new(S)
  5488  </pre>
  5489  
  5490  <p>
  5491  allocates storage for a variable of type <code>S</code>,
  5492  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5493  and returns a value of type <code>*S</code> containing the address
  5494  of the location.
  5495  </p>
  5496  
  5497  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5498  
  5499  <p>
  5500  The built-in function <code>make</code> takes a type <code>T</code>,
  5501  which must be a slice, map or channel type,
  5502  optionally followed by a type-specific list of expressions.
  5503  It returns a value of type <code>T</code> (not <code>*T</code>).
  5504  The memory is initialized as described in the section on
  5505  <a href="#The_zero_value">initial values</a>.
  5506  </p>
  5507  
  5508  <pre class="grammar">
  5509  Call             Type T     Result
  5510  
  5511  make(T, n)       slice      slice of type T with length n and capacity n
  5512  make(T, n, m)    slice      slice of type T with length n and capacity m
  5513  
  5514  make(T)          map        map of type T
  5515  make(T, n)       map        map of type T with initial space for n elements
  5516  
  5517  make(T)          channel    unbuffered channel of type T
  5518  make(T, n)       channel    buffered channel of type T, buffer size n
  5519  </pre>
  5520  
  5521  
  5522  <p>
  5523  The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
  5524  A <a href="#Constants">constant</a> size argument must be non-negative and
  5525  representable by a value of type <code>int</code>.
  5526  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5527  <code>n</code> must be no larger than <code>m</code>.
  5528  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5529  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5530  </p>
  5531  
  5532  <pre>
  5533  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5534  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5535  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5536  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5537  c := make(chan int, 10)         // channel with a buffer size of 10
  5538  m := make(map[string]int, 100)  // map with initial space for 100 elements
  5539  </pre>
  5540  
  5541  
  5542  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5543  
  5544  <p>
  5545  The built-in functions <code>append</code> and <code>copy</code> assist in
  5546  common slice operations.
  5547  For both functions, the result is independent of whether the memory referenced
  5548  by the arguments overlaps.
  5549  </p>
  5550  
  5551  <p>
  5552  The <a href="#Function_types">variadic</a> function <code>append</code>
  5553  appends zero or more values <code>x</code>
  5554  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5555  returns the resulting slice, also of type <code>S</code>.
  5556  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5557  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5558  <code>S</code> and the respective
  5559  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5560  As a special case, <code>append</code> also accepts a first argument
  5561  assignable to type <code>[]byte</code> with a second argument of
  5562  string type followed by <code>...</code>. This form appends the
  5563  bytes of the string.
  5564  </p>
  5565  
  5566  <pre class="grammar">
  5567  append(s S, x ...T) S  // T is the element type of S
  5568  </pre>
  5569  
  5570  <p>
  5571  If the capacity of <code>s</code> is not large enough to fit the additional
  5572  values, <code>append</code> allocates a new, sufficiently large underlying
  5573  array that fits both the existing slice elements and the additional values.
  5574  Otherwise, <code>append</code> re-uses the underlying array.
  5575  </p>
  5576  
  5577  <pre>
  5578  s0 := []int{0, 0}
  5579  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5580  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5581  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5582  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5583  
  5584  var t []interface{}
  5585  t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
  5586  
  5587  var b []byte
  5588  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5589  </pre>
  5590  
  5591  <p>
  5592  The function <code>copy</code> copies slice elements from
  5593  a source <code>src</code> to a destination <code>dst</code> and returns the
  5594  number of elements copied.
  5595  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5596  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5597  The number of elements copied is the minimum of
  5598  <code>len(src)</code> and <code>len(dst)</code>.
  5599  As a special case, <code>copy</code> also accepts a destination argument assignable
  5600  to type <code>[]byte</code> with a source argument of a string type.
  5601  This form copies the bytes from the string into the byte slice.
  5602  </p>
  5603  
  5604  <pre class="grammar">
  5605  copy(dst, src []T) int
  5606  copy(dst []byte, src string) int
  5607  </pre>
  5608  
  5609  <p>
  5610  Examples:
  5611  </p>
  5612  
  5613  <pre>
  5614  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5615  var s = make([]int, 6)
  5616  var b = make([]byte, 5)
  5617  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5618  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5619  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5620  </pre>
  5621  
  5622  
  5623  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5624  
  5625  <p>
  5626  The built-in function <code>delete</code> removes the element with key
  5627  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5628  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5629  to the key type of <code>m</code>.
  5630  </p>
  5631  
  5632  <pre class="grammar">
  5633  delete(m, k)  // remove element m[k] from map m
  5634  </pre>
  5635  
  5636  <p>
  5637  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5638  does not exist, <code>delete</code> is a no-op.
  5639  </p>
  5640  
  5641  
  5642  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5643  
  5644  <p>
  5645  Three functions assemble and disassemble complex numbers.
  5646  The built-in function <code>complex</code> constructs a complex
  5647  value from a floating-point real and imaginary part, while
  5648  <code>real</code> and <code>imag</code>
  5649  extract the real and imaginary parts of a complex value.
  5650  </p>
  5651  
  5652  <pre class="grammar">
  5653  complex(realPart, imaginaryPart floatT) complexT
  5654  real(complexT) floatT
  5655  imag(complexT) floatT
  5656  </pre>
  5657  
  5658  <p>
  5659  The type of the arguments and return value correspond.
  5660  For <code>complex</code>, the two arguments must be of the same
  5661  floating-point type and the return type is the complex type
  5662  with the corresponding floating-point constituents:
  5663  <code>complex64</code> for <code>float32</code>,
  5664  <code>complex128</code> for <code>float64</code>.
  5665  The <code>real</code> and <code>imag</code> functions
  5666  together form the inverse, so for a complex value <code>z</code>,
  5667  <code>z</code> <code>==</code> <code>complex(real(z),</code> <code>imag(z))</code>.
  5668  </p>
  5669  
  5670  <p>
  5671  If the operands of these functions are all constants, the return
  5672  value is a constant.
  5673  </p>
  5674  
  5675  <pre>
  5676  var a = complex(2, -2)             // complex128
  5677  var b = complex(1.0, -1.4)         // complex128
  5678  x := float32(math.Cos(math.Pi/2))  // float32
  5679  var c64 = complex(5, -x)           // complex64
  5680  var im = imag(b)                   // float64
  5681  var rl = real(c64)                 // float32
  5682  </pre>
  5683  
  5684  <h3 id="Handling_panics">Handling panics</h3>
  5685  
  5686  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5687  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5688  and program-defined error conditions.
  5689  </p>
  5690  
  5691  <pre class="grammar">
  5692  func panic(interface{})
  5693  func recover() interface{}
  5694  </pre>
  5695  
  5696  <p>
  5697  While executing a function <code>F</code>,
  5698  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5699  terminates the execution of <code>F</code>.
  5700  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5701  are then executed as usual.
  5702  Next, any deferred functions run by <code>F's</code> caller are run,
  5703  and so on up to any deferred by the top-level function in the executing goroutine.
  5704  At that point, the program is terminated and the error
  5705  condition is reported, including the value of the argument to <code>panic</code>.
  5706  This termination sequence is called <i>panicking</i>.
  5707  </p>
  5708  
  5709  <pre>
  5710  panic(42)
  5711  panic("unreachable")
  5712  panic(Error("cannot parse"))
  5713  </pre>
  5714  
  5715  <p>
  5716  The <code>recover</code> function allows a program to manage behavior
  5717  of a panicking goroutine.
  5718  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5719  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5720  is executing.
  5721  When the running of deferred functions reaches <code>D</code>,
  5722  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5723  If <code>D</code> returns normally, without starting a new
  5724  <code>panic</code>, the panicking sequence stops. In that case,
  5725  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5726  is discarded, and normal execution resumes.
  5727  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5728  execution terminates by returning to its caller.
  5729  </p>
  5730  
  5731  <p>
  5732  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5733  </p>
  5734  <ul>
  5735  <li>
  5736  <code>panic</code>'s argument was <code>nil</code>;
  5737  </li>
  5738  <li>
  5739  the goroutine is not panicking;
  5740  </li>
  5741  <li>
  5742  <code>recover</code> was not called directly by a deferred function.
  5743  </li>
  5744  </ul>
  5745  
  5746  <p>
  5747  The <code>protect</code> function in the example below invokes
  5748  the function argument <code>g</code> and protects callers from
  5749  run-time panics raised by <code>g</code>.
  5750  </p>
  5751  
  5752  <pre>
  5753  func protect(g func()) {
  5754  	defer func() {
  5755  		log.Println("done")  // Println executes normally even if there is a panic
  5756  		if x := recover(); x != nil {
  5757  			log.Printf("run time panic: %v", x)
  5758  		}
  5759  	}()
  5760  	log.Println("start")
  5761  	g()
  5762  }
  5763  </pre>
  5764  
  5765  
  5766  <h3 id="Bootstrapping">Bootstrapping</h3>
  5767  
  5768  <p>
  5769  Current implementations provide several built-in functions useful during
  5770  bootstrapping. These functions are documented for completeness but are not
  5771  guaranteed to stay in the language. They do not return a result.
  5772  </p>
  5773  
  5774  <pre class="grammar">
  5775  Function   Behavior
  5776  
  5777  print      prints all arguments; formatting of arguments is implementation-specific
  5778  println    like print but prints spaces between arguments and a newline at the end
  5779  </pre>
  5780  
  5781  
  5782  <h2 id="Packages">Packages</h2>
  5783  
  5784  <p>
  5785  Go programs are constructed by linking together <i>packages</i>.
  5786  A package in turn is constructed from one or more source files
  5787  that together declare constants, types, variables and functions
  5788  belonging to the package and which are accessible in all files
  5789  of the same package. Those elements may be
  5790  <a href="#Exported_identifiers">exported</a> and used in another package.
  5791  </p>
  5792  
  5793  <h3 id="Source_file_organization">Source file organization</h3>
  5794  
  5795  <p>
  5796  Each source file consists of a package clause defining the package
  5797  to which it belongs, followed by a possibly empty set of import
  5798  declarations that declare packages whose contents it wishes to use,
  5799  followed by a possibly empty set of declarations of functions,
  5800  types, variables, and constants.
  5801  </p>
  5802  
  5803  <pre class="ebnf">
  5804  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  5805  </pre>
  5806  
  5807  <h3 id="Package_clause">Package clause</h3>
  5808  
  5809  <p>
  5810  A package clause begins each source file and defines the package
  5811  to which the file belongs.
  5812  </p>
  5813  
  5814  <pre class="ebnf">
  5815  PackageClause  = "package" PackageName .
  5816  PackageName    = identifier .
  5817  </pre>
  5818  
  5819  <p>
  5820  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  5821  </p>
  5822  
  5823  <pre>
  5824  package math
  5825  </pre>
  5826  
  5827  <p>
  5828  A set of files sharing the same PackageName form the implementation of a package.
  5829  An implementation may require that all source files for a package inhabit the same directory.
  5830  </p>
  5831  
  5832  <h3 id="Import_declarations">Import declarations</h3>
  5833  
  5834  <p>
  5835  An import declaration states that the source file containing the declaration
  5836  depends on functionality of the <i>imported</i> package
  5837  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  5838  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  5839  of that package.
  5840  The import names an identifier (PackageName) to be used for access and an ImportPath
  5841  that specifies the package to be imported.
  5842  </p>
  5843  
  5844  <pre class="ebnf">
  5845  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  5846  ImportSpec       = [ "." | PackageName ] ImportPath .
  5847  ImportPath       = string_lit .
  5848  </pre>
  5849  
  5850  <p>
  5851  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  5852  to access exported identifiers of the package within the importing source file.
  5853  It is declared in the <a href="#Blocks">file block</a>.
  5854  If the PackageName is omitted, it defaults to the identifier specified in the
  5855  <a href="#Package_clause">package clause</a> of the imported package.
  5856  If an explicit period (<code>.</code>) appears instead of a name, all the
  5857  package's exported identifiers declared in that package's
  5858  <a href="#Blocks">package block</a> will be declared in the importing source
  5859  file's file block and must be accessed without a qualifier.
  5860  </p>
  5861  
  5862  <p>
  5863  The interpretation of the ImportPath is implementation-dependent but
  5864  it is typically a substring of the full file name of the compiled
  5865  package and may be relative to a repository of installed packages.
  5866  </p>
  5867  
  5868  <p>
  5869  Implementation restriction: A compiler may restrict ImportPaths to
  5870  non-empty strings using only characters belonging to
  5871  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  5872  L, M, N, P, and S general categories (the Graphic characters without
  5873  spaces) and may also exclude the characters
  5874  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  5875  and the Unicode replacement character U+FFFD.
  5876  </p>
  5877  
  5878  <p>
  5879  Assume we have compiled a package containing the package clause
  5880  <code>package math</code>, which exports function <code>Sin</code>, and
  5881  installed the compiled package in the file identified by
  5882  <code>"lib/math"</code>.
  5883  This table illustrates how <code>Sin</code> is accessed in files
  5884  that import the package after the
  5885  various types of import declaration.
  5886  </p>
  5887  
  5888  <pre class="grammar">
  5889  Import declaration          Local name of Sin
  5890  
  5891  import   "lib/math"         math.Sin
  5892  import m "lib/math"         m.Sin
  5893  import . "lib/math"         Sin
  5894  </pre>
  5895  
  5896  <p>
  5897  An import declaration declares a dependency relation between
  5898  the importing and imported package.
  5899  It is illegal for a package to import itself, directly or indirectly,
  5900  or to directly import a package without
  5901  referring to any of its exported identifiers. To import a package solely for
  5902  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  5903  identifier as explicit package name:
  5904  </p>
  5905  
  5906  <pre>
  5907  import _ "lib/math"
  5908  </pre>
  5909  
  5910  
  5911  <h3 id="An_example_package">An example package</h3>
  5912  
  5913  <p>
  5914  Here is a complete Go package that implements a concurrent prime sieve.
  5915  </p>
  5916  
  5917  <pre>
  5918  package main
  5919  
  5920  import "fmt"
  5921  
  5922  // Send the sequence 2, 3, 4, … to channel 'ch'.
  5923  func generate(ch chan&lt;- int) {
  5924  	for i := 2; ; i++ {
  5925  		ch &lt;- i  // Send 'i' to channel 'ch'.
  5926  	}
  5927  }
  5928  
  5929  // Copy the values from channel 'src' to channel 'dst',
  5930  // removing those divisible by 'prime'.
  5931  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  5932  	for i := range src {  // Loop over values received from 'src'.
  5933  		if i%prime != 0 {
  5934  			dst &lt;- i  // Send 'i' to channel 'dst'.
  5935  		}
  5936  	}
  5937  }
  5938  
  5939  // The prime sieve: Daisy-chain filter processes together.
  5940  func sieve() {
  5941  	ch := make(chan int)  // Create a new channel.
  5942  	go generate(ch)       // Start generate() as a subprocess.
  5943  	for {
  5944  		prime := &lt;-ch
  5945  		fmt.Print(prime, "\n")
  5946  		ch1 := make(chan int)
  5947  		go filter(ch, ch1, prime)
  5948  		ch = ch1
  5949  	}
  5950  }
  5951  
  5952  func main() {
  5953  	sieve()
  5954  }
  5955  </pre>
  5956  
  5957  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  5958  
  5959  <h3 id="The_zero_value">The zero value</h3>
  5960  <p>
  5961  When storage is allocated for a <a href="#Variables">variable</a>,
  5962  either through a declaration or a call of <code>new</code>, or when
  5963  a new value is created, either through a composite literal or a call
  5964  of <code>make</code>,
  5965  and no explicit initialization is provided, the variable or value is
  5966  given a default value.  Each element of such a variable or value is
  5967  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  5968  <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
  5969  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  5970  This initialization is done recursively, so for instance each element of an
  5971  array of structs will have its fields zeroed if no value is specified.
  5972  </p>
  5973  <p>
  5974  These two simple declarations are equivalent:
  5975  </p>
  5976  
  5977  <pre>
  5978  var i int
  5979  var i int = 0
  5980  </pre>
  5981  
  5982  <p>
  5983  After
  5984  </p>
  5985  
  5986  <pre>
  5987  type T struct { i int; f float64; next *T }
  5988  t := new(T)
  5989  </pre>
  5990  
  5991  <p>
  5992  the following holds:
  5993  </p>
  5994  
  5995  <pre>
  5996  t.i == 0
  5997  t.f == 0.0
  5998  t.next == nil
  5999  </pre>
  6000  
  6001  <p>
  6002  The same would also be true after
  6003  </p>
  6004  
  6005  <pre>
  6006  var t T
  6007  </pre>
  6008  
  6009  <h3 id="Package_initialization">Package initialization</h3>
  6010  
  6011  <p>
  6012  Within a package, package-level variables are initialized in
  6013  <i>declaration order</i> but after any of the variables
  6014  they <i>depend</i> on.
  6015  </p>
  6016  
  6017  <p>
  6018  More precisely, a package-level variable is considered <i>ready for
  6019  initialization</i> if it is not yet initialized and either has
  6020  no <a href="#Variable_declarations">initialization expression</a> or
  6021  its initialization expression has no dependencies on uninitialized variables.
  6022  Initialization proceeds by repeatedly initializing the next package-level
  6023  variable that is earliest in declaration order and ready for initialization,
  6024  until there are no variables ready for initialization.
  6025  </p>
  6026  
  6027  <p>
  6028  If any variables are still uninitialized when this
  6029  process ends, those variables are part of one or more initialization cycles,
  6030  and the program is not valid.
  6031  </p>
  6032  
  6033  <p>
  6034  The declaration order of variables declared in multiple files is determined
  6035  by the order in which the files are presented to the compiler: Variables
  6036  declared in the first file are declared before any of the variables declared
  6037  in the second file, and so on.
  6038  </p>
  6039  
  6040  <p>
  6041  Dependency analysis does not rely on the actual values of the
  6042  variables, only on lexical <i>references</i> to them in the source,
  6043  analyzed transitively. For instance, if a variable <code>x</code>'s
  6044  initialization expression refers to a function whose body refers to
  6045  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6046  Specifically:
  6047  </p>
  6048  
  6049  <ul>
  6050  <li>
  6051  A reference to a variable or function is an identifier denoting that
  6052  variable or function.
  6053  </li>
  6054  
  6055  <li>
  6056  A reference to a method <code>m</code> is a
  6057  <a href="#Method_values">method value</a> or
  6058  <a href="#Method_expressions">method expression</a> of the form
  6059  <code>t.m</code>, where the (static) type of <code>t</code> is
  6060  not an interface type, and the method <code>m</code> is in the
  6061  <a href="#Method_sets">method set</a> of <code>t</code>.
  6062  It is immaterial whether the resulting function value
  6063  <code>t.m</code> is invoked.
  6064  </li>
  6065  
  6066  <li>
  6067  A variable, function, or method <code>x</code> depends on a variable
  6068  <code>y</code> if <code>x</code>'s initialization expression or body
  6069  (for functions and methods) contains a reference to <code>y</code>
  6070  or to a function or method that depends on <code>y</code>.
  6071  </li>
  6072  </ul>
  6073  
  6074  <p>
  6075  Dependency analysis is performed per package; only references referring
  6076  to variables, functions, and methods declared in the current package
  6077  are considered.
  6078  </p>
  6079  
  6080  <p>
  6081  For example, given the declarations
  6082  </p>
  6083  
  6084  <pre>
  6085  var (
  6086  	a = c + b
  6087  	b = f()
  6088  	c = f()
  6089  	d = 3
  6090  )
  6091  
  6092  func f() int {
  6093  	d++
  6094  	return d
  6095  }
  6096  </pre>
  6097  
  6098  <p>
  6099  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6100  </p>
  6101  
  6102  <p>
  6103  Variables may also be initialized using functions named <code>init</code>
  6104  declared in the package block, with no arguments and no result parameters.
  6105  </p>
  6106  
  6107  <pre>
  6108  func init() { … }
  6109  </pre>
  6110  
  6111  <p>
  6112  Multiple such functions may be defined, even within a single
  6113  source file. The <code>init</code> identifier is not
  6114  <a href="#Declarations_and_scope">declared</a> and thus
  6115  <code>init</code> functions cannot be referred to from anywhere
  6116  in a program.
  6117  </p>
  6118  
  6119  <p>
  6120  A package with no imports is initialized by assigning initial values
  6121  to all its package-level variables followed by calling all <code>init</code>
  6122  functions in the order they appear in the source, possibly in multiple files,
  6123  as presented to the compiler.
  6124  If a package has imports, the imported packages are initialized
  6125  before initializing the package itself. If multiple packages import
  6126  a package, the imported package will be initialized only once.
  6127  The importing of packages, by construction, guarantees that there
  6128  can be no cyclic initialization dependencies.
  6129  </p>
  6130  
  6131  <p>
  6132  Package initialization&mdash;variable initialization and the invocation of
  6133  <code>init</code> functions&mdash;happens in a single goroutine,
  6134  sequentially, one package at a time.
  6135  An <code>init</code> function may launch other goroutines, which can run
  6136  concurrently with the initialization code. However, initialization
  6137  always sequences
  6138  the <code>init</code> functions: it will not invoke the next one
  6139  until the previous one has returned.
  6140  </p>
  6141  
  6142  <p>
  6143  To ensure reproducible initialization behavior, build systems are encouraged
  6144  to present multiple files belonging to the same package in lexical file name
  6145  order to a compiler.
  6146  </p>
  6147  
  6148  
  6149  <h3 id="Program_execution">Program execution</h3>
  6150  <p>
  6151  A complete program is created by linking a single, unimported package
  6152  called the <i>main package</i> with all the packages it imports, transitively.
  6153  The main package must
  6154  have package name <code>main</code> and
  6155  declare a function <code>main</code> that takes no
  6156  arguments and returns no value.
  6157  </p>
  6158  
  6159  <pre>
  6160  func main() { … }
  6161  </pre>
  6162  
  6163  <p>
  6164  Program execution begins by initializing the main package and then
  6165  invoking the function <code>main</code>.
  6166  When that function invocation returns, the program exits.
  6167  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6168  </p>
  6169  
  6170  <h2 id="Errors">Errors</h2>
  6171  
  6172  <p>
  6173  The predeclared type <code>error</code> is defined as
  6174  </p>
  6175  
  6176  <pre>
  6177  type error interface {
  6178  	Error() string
  6179  }
  6180  </pre>
  6181  
  6182  <p>
  6183  It is the conventional interface for representing an error condition,
  6184  with the nil value representing no error.
  6185  For instance, a function to read data from a file might be defined:
  6186  </p>
  6187  
  6188  <pre>
  6189  func Read(f *File, b []byte) (n int, err error)
  6190  </pre>
  6191  
  6192  <h2 id="Run_time_panics">Run-time panics</h2>
  6193  
  6194  <p>
  6195  Execution errors such as attempting to index an array out
  6196  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6197  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6198  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6199  That type satisfies the predeclared interface type
  6200  <a href="#Errors"><code>error</code></a>.
  6201  The exact error values that
  6202  represent distinct run-time error conditions are unspecified.
  6203  </p>
  6204  
  6205  <pre>
  6206  package runtime
  6207  
  6208  type Error interface {
  6209  	error
  6210  	// and perhaps other methods
  6211  }
  6212  </pre>
  6213  
  6214  <h2 id="System_considerations">System considerations</h2>
  6215  
  6216  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6217  
  6218  <p>
  6219  The built-in package <code>unsafe</code>, known to the compiler,
  6220  provides facilities for low-level programming including operations
  6221  that violate the type system. A package using <code>unsafe</code>
  6222  must be vetted manually for type safety and may not be portable.
  6223  The package provides the following interface:
  6224  </p>
  6225  
  6226  <pre class="grammar">
  6227  package unsafe
  6228  
  6229  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6230  type Pointer *ArbitraryType
  6231  
  6232  func Alignof(variable ArbitraryType) uintptr
  6233  func Offsetof(selector ArbitraryType) uintptr
  6234  func Sizeof(variable ArbitraryType) uintptr
  6235  </pre>
  6236  
  6237  <p>
  6238  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6239  value may not be <a href="#Address_operators">dereferenced</a>.
  6240  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6241  a <code>Pointer</code> type and vice versa.
  6242  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6243  </p>
  6244  
  6245  <pre>
  6246  var f float64
  6247  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6248  
  6249  type ptr unsafe.Pointer
  6250  bits = *(*uint64)(ptr(&amp;f))
  6251  
  6252  var p ptr = nil
  6253  </pre>
  6254  
  6255  <p>
  6256  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6257  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6258  as if <code>v</code> was declared via <code>var v = x</code>.
  6259  </p>
  6260  <p>
  6261  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6262  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6263  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6264  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6265  without pointer indirections through fields of the struct.
  6266  For a struct <code>s</code> with field <code>f</code>:
  6267  </p>
  6268  
  6269  <pre>
  6270  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6271  </pre>
  6272  
  6273  <p>
  6274  Computer architectures may require memory addresses to be <i>aligned</i>;
  6275  that is, for addresses of a variable to be a multiple of a factor,
  6276  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6277  takes an expression denoting a variable of any type and returns the
  6278  alignment of the (type of the) variable in bytes.  For a variable
  6279  <code>x</code>:
  6280  </p>
  6281  
  6282  <pre>
  6283  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6284  </pre>
  6285  
  6286  <p>
  6287  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6288  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6289  </p>
  6290  
  6291  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6292  
  6293  <p>
  6294  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6295  </p>
  6296  
  6297  <pre class="grammar">
  6298  type                                 size in bytes
  6299  
  6300  byte, uint8, int8                     1
  6301  uint16, int16                         2
  6302  uint32, int32, float32                4
  6303  uint64, int64, float64, complex64     8
  6304  complex128                           16
  6305  </pre>
  6306  
  6307  <p>
  6308  The following minimal alignment properties are guaranteed:
  6309  </p>
  6310  <ol>
  6311  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6312  </li>
  6313  
  6314  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6315     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6316  </li>
  6317  
  6318  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6319     <code>unsafe.Alignof(x[0])</code>, but at least 1.
  6320  </li>
  6321  </ol>
  6322  
  6323  <p>
  6324  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6325  </p>