rsc.io/go@v0.0.0-20150416155037-e040fd465409/src/runtime/cgocall.go (about)

     1  // Copyright 2009 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Cgo call and callback support.
     6  //
     7  // To call into the C function f from Go, the cgo-generated code calls
     8  // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
     9  // gcc-compiled function written by cgo.
    10  //
    11  // runtime.cgocall (below) locks g to m, calls entersyscall
    12  // so as not to block other goroutines or the garbage collector,
    13  // and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame).
    14  //
    15  // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
    16  // (assumed to be an operating system-allocated stack, so safe to run
    17  // gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
    18  //
    19  // _cgo_Cfunc_f invokes the actual C function f with arguments
    20  // taken from the frame structure, records the results in the frame,
    21  // and returns to runtime.asmcgocall.
    22  //
    23  // After it regains control, runtime.asmcgocall switches back to the
    24  // original g (m->curg)'s stack and returns to runtime.cgocall.
    25  //
    26  // After it regains control, runtime.cgocall calls exitsyscall, which blocks
    27  // until this m can run Go code without violating the $GOMAXPROCS limit,
    28  // and then unlocks g from m.
    29  //
    30  // The above description skipped over the possibility of the gcc-compiled
    31  // function f calling back into Go.  If that happens, we continue down
    32  // the rabbit hole during the execution of f.
    33  //
    34  // To make it possible for gcc-compiled C code to call a Go function p.GoF,
    35  // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
    36  // know about packages).  The gcc-compiled C function f calls GoF.
    37  //
    38  // GoF calls crosscall2(_cgoexp_GoF, frame, framesize).  Crosscall2
    39  // (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument
    40  // adapter from the gcc function call ABI to the 6c function call ABI.
    41  // It is called from gcc to call 6c functions.  In this case it calls
    42  // _cgoexp_GoF(frame, framesize), still running on m->g0's stack
    43  // and outside the $GOMAXPROCS limit.  Thus, this code cannot yet
    44  // call arbitrary Go code directly and must be careful not to allocate
    45  // memory or use up m->g0's stack.
    46  //
    47  // _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize).
    48  // (The reason for having _cgoexp_GoF instead of writing a crosscall3
    49  // to make this call directly is that _cgoexp_GoF, because it is compiled
    50  // with 6c instead of gcc, can refer to dotted names like
    51  // runtime.cgocallback and p.GoF.)
    52  //
    53  // runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's
    54  // stack to the original g (m->curg)'s stack, on which it calls
    55  // runtime.cgocallbackg(p.GoF, frame, framesize).
    56  // As part of the stack switch, runtime.cgocallback saves the current
    57  // SP as m->g0->sched.sp, so that any use of m->g0's stack during the
    58  // execution of the callback will be done below the existing stack frames.
    59  // Before overwriting m->g0->sched.sp, it pushes the old value on the
    60  // m->g0 stack, so that it can be restored later.
    61  //
    62  // runtime.cgocallbackg (below) is now running on a real goroutine
    63  // stack (not an m->g0 stack).  First it calls runtime.exitsyscall, which will
    64  // block until the $GOMAXPROCS limit allows running this goroutine.
    65  // Once exitsyscall has returned, it is safe to do things like call the memory
    66  // allocator or invoke the Go callback function p.GoF.  runtime.cgocallbackg
    67  // first defers a function to unwind m->g0.sched.sp, so that if p.GoF
    68  // panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack
    69  // and the m->curg stack will be unwound in lock step.
    70  // Then it calls p.GoF.  Finally it pops but does not execute the deferred
    71  // function, calls runtime.entersyscall, and returns to runtime.cgocallback.
    72  //
    73  // After it regains control, runtime.cgocallback switches back to
    74  // m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old
    75  // m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF.
    76  //
    77  // _cgoexp_GoF immediately returns to crosscall2, which restores the
    78  // callee-save registers for gcc and returns to GoF, which returns to f.
    79  
    80  package runtime
    81  
    82  import "unsafe"
    83  
    84  // Call from Go to C.
    85  //go:nosplit
    86  func cgocall(fn, arg unsafe.Pointer) {
    87  	cgocall_errno(fn, arg)
    88  }
    89  
    90  //go:nosplit
    91  func cgocall_errno(fn, arg unsafe.Pointer) int32 {
    92  	if !iscgo && GOOS != "solaris" && GOOS != "windows" {
    93  		throw("cgocall unavailable")
    94  	}
    95  
    96  	if fn == nil {
    97  		throw("cgocall nil")
    98  	}
    99  
   100  	if raceenabled {
   101  		racereleasemerge(unsafe.Pointer(&racecgosync))
   102  	}
   103  
   104  	/*
   105  	 * Lock g to m to ensure we stay on the same stack if we do a
   106  	 * cgo callback. Add entry to defer stack in case of panic.
   107  	 */
   108  	lockOSThread()
   109  	mp := getg().m
   110  	mp.ncgocall++
   111  	mp.ncgo++
   112  	defer endcgo(mp)
   113  
   114  	/*
   115  	 * Announce we are entering a system call
   116  	 * so that the scheduler knows to create another
   117  	 * M to run goroutines while we are in the
   118  	 * foreign code.
   119  	 *
   120  	 * The call to asmcgocall is guaranteed not to
   121  	 * split the stack and does not allocate memory,
   122  	 * so it is safe to call while "in a system call", outside
   123  	 * the $GOMAXPROCS accounting.
   124  	 */
   125  	entersyscall(0)
   126  	errno := asmcgocall_errno(fn, arg)
   127  	exitsyscall(0)
   128  
   129  	return errno
   130  }
   131  
   132  //go:nosplit
   133  func endcgo(mp *m) {
   134  	mp.ncgo--
   135  	if mp.ncgo == 0 {
   136  		// We are going back to Go and are not in a recursive
   137  		// call.  Let the GC collect any memory allocated via
   138  		// _cgo_allocate that is no longer referenced.
   139  		mp.cgomal = nil
   140  	}
   141  
   142  	if raceenabled {
   143  		raceacquire(unsafe.Pointer(&racecgosync))
   144  	}
   145  
   146  	unlockOSThread() // invalidates mp
   147  }
   148  
   149  // Helper functions for cgo code.
   150  
   151  func cmalloc(n uintptr) unsafe.Pointer {
   152  	var args struct {
   153  		n   uint64
   154  		ret unsafe.Pointer
   155  	}
   156  	args.n = uint64(n)
   157  	cgocall(_cgo_malloc, unsafe.Pointer(&args))
   158  	if args.ret == nil {
   159  		throw("C malloc failed")
   160  	}
   161  	return args.ret
   162  }
   163  
   164  func cfree(p unsafe.Pointer) {
   165  	cgocall(_cgo_free, p)
   166  }
   167  
   168  // Call from C back to Go.
   169  //go:nosplit
   170  func cgocallbackg() {
   171  	gp := getg()
   172  	if gp != gp.m.curg {
   173  		println("runtime: bad g in cgocallback")
   174  		exit(2)
   175  	}
   176  
   177  	// entersyscall saves the caller's SP to allow the GC to trace the Go
   178  	// stack. However, since we're returning to an earlier stack frame and
   179  	// need to pair with the entersyscall() call made by cgocall, we must
   180  	// save syscall* and let reentersyscall restore them.
   181  	savedsp := unsafe.Pointer(gp.syscallsp)
   182  	savedpc := gp.syscallpc
   183  	exitsyscall(0) // coming out of cgo call
   184  	cgocallbackg1()
   185  	// going back to cgo call
   186  	reentersyscall(savedpc, uintptr(savedsp))
   187  }
   188  
   189  func cgocallbackg1() {
   190  	gp := getg()
   191  	if gp.m.needextram {
   192  		gp.m.needextram = false
   193  		systemstack(newextram)
   194  	}
   195  
   196  	if gp.m.ncgo == 0 {
   197  		// The C call to Go came from a thread not currently running
   198  		// any Go. In the case of -buildmode=c-archive or c-shared,
   199  		// this call may be coming in before package initialization
   200  		// is complete. Wait until it is.
   201  		<-main_init_done
   202  	}
   203  
   204  	// Add entry to defer stack in case of panic.
   205  	restore := true
   206  	defer unwindm(&restore)
   207  
   208  	if raceenabled {
   209  		raceacquire(unsafe.Pointer(&racecgosync))
   210  	}
   211  
   212  	type args struct {
   213  		fn      *funcval
   214  		arg     unsafe.Pointer
   215  		argsize uintptr
   216  	}
   217  	var cb *args
   218  
   219  	// Location of callback arguments depends on stack frame layout
   220  	// and size of stack frame of cgocallback_gofunc.
   221  	sp := gp.m.g0.sched.sp
   222  	switch GOARCH {
   223  	default:
   224  		throw("cgocallbackg is unimplemented on arch")
   225  	case "arm":
   226  		// On arm, stack frame is two words and there's a saved LR between
   227  		// SP and the stack frame and between the stack frame and the arguments.
   228  		cb = (*args)(unsafe.Pointer(sp + 4*ptrSize))
   229  	case "arm64":
   230  		// On arm64, stack frame is four words and there's a saved LR between
   231  		// SP and the stack frame and between the stack frame and the arguments.
   232  		cb = (*args)(unsafe.Pointer(sp + 5*ptrSize))
   233  	case "amd64":
   234  		// On amd64, stack frame is one word, plus caller PC.
   235  		if framepointer_enabled {
   236  			// In this case, there's also saved BP.
   237  			cb = (*args)(unsafe.Pointer(sp + 3*ptrSize))
   238  			break
   239  		}
   240  		cb = (*args)(unsafe.Pointer(sp + 2*ptrSize))
   241  	case "386":
   242  		// On 386, stack frame is three words, plus caller PC.
   243  		cb = (*args)(unsafe.Pointer(sp + 4*ptrSize))
   244  	case "ppc64", "ppc64le":
   245  		// On ppc64, stack frame is two words and there's a
   246  		// saved LR between SP and the stack frame and between
   247  		// the stack frame and the arguments.
   248  		cb = (*args)(unsafe.Pointer(sp + 4*ptrSize))
   249  	}
   250  
   251  	// Invoke callback.
   252  	// NOTE(rsc): passing nil for argtype means that the copying of the
   253  	// results back into cb.arg happens without any corresponding write barriers.
   254  	// For cgo, cb.arg points into a C stack frame and therefore doesn't
   255  	// hold any pointers that the GC can find anyway - the write barrier
   256  	// would be a no-op.
   257  	reflectcall(nil, unsafe.Pointer(cb.fn), unsafe.Pointer(cb.arg), uint32(cb.argsize), 0)
   258  
   259  	if raceenabled {
   260  		racereleasemerge(unsafe.Pointer(&racecgosync))
   261  	}
   262  
   263  	// Do not unwind m->g0->sched.sp.
   264  	// Our caller, cgocallback, will do that.
   265  	restore = false
   266  }
   267  
   268  func unwindm(restore *bool) {
   269  	if !*restore {
   270  		return
   271  	}
   272  	// Restore sp saved by cgocallback during
   273  	// unwind of g's stack (see comment at top of file).
   274  	mp := acquirem()
   275  	sched := &mp.g0.sched
   276  	switch GOARCH {
   277  	default:
   278  		throw("unwindm not implemented")
   279  	case "386", "amd64":
   280  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp))
   281  	case "arm":
   282  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 4))
   283  	case "arm64":
   284  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16))
   285  	case "ppc64", "ppc64le":
   286  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 8))
   287  	}
   288  	releasem(mp)
   289  }
   290  
   291  // called from assembly
   292  func badcgocallback() {
   293  	throw("misaligned stack in cgocallback")
   294  }
   295  
   296  // called from (incomplete) assembly
   297  func cgounimpl() {
   298  	throw("cgo not implemented")
   299  }
   300  
   301  var racecgosync uint64 // represents possible synchronization in C code