rsc.io/go@v0.0.0-20150416155037-e040fd465409/src/runtime/vdso_linux_amd64.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import "unsafe"
     8  
     9  // Look up symbols in the Linux vDSO.
    10  
    11  // This code was originally based on the sample Linux vDSO parser at
    12  // https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/vDSO/parse_vdso.c
    13  
    14  // This implements the ELF dynamic linking spec at
    15  // http://sco.com/developers/gabi/latest/ch5.dynamic.html
    16  
    17  // The version section is documented at
    18  // http://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/symversion.html
    19  
    20  const (
    21  	_AT_RANDOM       = 25
    22  	_AT_SYSINFO_EHDR = 33
    23  	_AT_NULL         = 0 /* End of vector */
    24  
    25  	_PT_LOAD    = 1 /* Loadable program segment */
    26  	_PT_DYNAMIC = 2 /* Dynamic linking information */
    27  
    28  	_DT_NULL   = 0 /* Marks end of dynamic section */
    29  	_DT_HASH   = 4 /* Dynamic symbol hash table */
    30  	_DT_STRTAB = 5 /* Address of string table */
    31  	_DT_SYMTAB = 6 /* Address of symbol table */
    32  	_DT_VERSYM = 0x6ffffff0
    33  	_DT_VERDEF = 0x6ffffffc
    34  
    35  	_VER_FLG_BASE = 0x1 /* Version definition of file itself */
    36  
    37  	_SHN_UNDEF = 0 /* Undefined section */
    38  
    39  	_SHT_DYNSYM = 11 /* Dynamic linker symbol table */
    40  
    41  	_STT_FUNC = 2 /* Symbol is a code object */
    42  
    43  	_STB_GLOBAL = 1 /* Global symbol */
    44  	_STB_WEAK   = 2 /* Weak symbol */
    45  
    46  	_EI_NIDENT = 16
    47  )
    48  
    49  /* How to extract and insert information held in the st_info field.  */
    50  func _ELF64_ST_BIND(val byte) byte { return val >> 4 }
    51  func _ELF64_ST_TYPE(val byte) byte { return val & 0xf }
    52  
    53  type elf64Sym struct {
    54  	st_name  uint32
    55  	st_info  byte
    56  	st_other byte
    57  	st_shndx uint16
    58  	st_value uint64
    59  	st_size  uint64
    60  }
    61  
    62  type elf64Verdef struct {
    63  	vd_version uint16 /* Version revision */
    64  	vd_flags   uint16 /* Version information */
    65  	vd_ndx     uint16 /* Version Index */
    66  	vd_cnt     uint16 /* Number of associated aux entries */
    67  	vd_hash    uint32 /* Version name hash value */
    68  	vd_aux     uint32 /* Offset in bytes to verdaux array */
    69  	vd_next    uint32 /* Offset in bytes to next verdef entry */
    70  }
    71  
    72  type elf64Ehdr struct {
    73  	e_ident     [_EI_NIDENT]byte /* Magic number and other info */
    74  	e_type      uint16           /* Object file type */
    75  	e_machine   uint16           /* Architecture */
    76  	e_version   uint32           /* Object file version */
    77  	e_entry     uint64           /* Entry point virtual address */
    78  	e_phoff     uint64           /* Program header table file offset */
    79  	e_shoff     uint64           /* Section header table file offset */
    80  	e_flags     uint32           /* Processor-specific flags */
    81  	e_ehsize    uint16           /* ELF header size in bytes */
    82  	e_phentsize uint16           /* Program header table entry size */
    83  	e_phnum     uint16           /* Program header table entry count */
    84  	e_shentsize uint16           /* Section header table entry size */
    85  	e_shnum     uint16           /* Section header table entry count */
    86  	e_shstrndx  uint16           /* Section header string table index */
    87  }
    88  
    89  type elf64Phdr struct {
    90  	p_type   uint32 /* Segment type */
    91  	p_flags  uint32 /* Segment flags */
    92  	p_offset uint64 /* Segment file offset */
    93  	p_vaddr  uint64 /* Segment virtual address */
    94  	p_paddr  uint64 /* Segment physical address */
    95  	p_filesz uint64 /* Segment size in file */
    96  	p_memsz  uint64 /* Segment size in memory */
    97  	p_align  uint64 /* Segment alignment */
    98  }
    99  
   100  type elf64Shdr struct {
   101  	sh_name      uint32 /* Section name (string tbl index) */
   102  	sh_type      uint32 /* Section type */
   103  	sh_flags     uint64 /* Section flags */
   104  	sh_addr      uint64 /* Section virtual addr at execution */
   105  	sh_offset    uint64 /* Section file offset */
   106  	sh_size      uint64 /* Section size in bytes */
   107  	sh_link      uint32 /* Link to another section */
   108  	sh_info      uint32 /* Additional section information */
   109  	sh_addralign uint64 /* Section alignment */
   110  	sh_entsize   uint64 /* Entry size if section holds table */
   111  }
   112  
   113  type elf64Dyn struct {
   114  	d_tag int64  /* Dynamic entry type */
   115  	d_val uint64 /* Integer value */
   116  }
   117  
   118  type elf64Verdaux struct {
   119  	vda_name uint32 /* Version or dependency names */
   120  	vda_next uint32 /* Offset in bytes to next verdaux entry */
   121  }
   122  
   123  type elf64Auxv struct {
   124  	a_type uint64 /* Entry type */
   125  	a_val  uint64 /* Integer value */
   126  }
   127  
   128  type symbol_key struct {
   129  	name     string
   130  	sym_hash uint32
   131  	ptr      *uintptr
   132  }
   133  
   134  type version_key struct {
   135  	version  string
   136  	ver_hash uint32
   137  }
   138  
   139  type vdso_info struct {
   140  	valid bool
   141  
   142  	/* Load information */
   143  	load_addr   uintptr
   144  	load_offset uintptr /* load_addr - recorded vaddr */
   145  
   146  	/* Symbol table */
   147  	symtab     *[1 << 32]elf64Sym
   148  	symstrings *[1 << 32]byte
   149  	chain      []uint32
   150  	bucket     []uint32
   151  
   152  	/* Version table */
   153  	versym *[1 << 32]uint16
   154  	verdef *elf64Verdef
   155  }
   156  
   157  var linux26 = version_key{"LINUX_2.6", 0x3ae75f6}
   158  
   159  var sym_keys = []symbol_key{
   160  	{"__vdso_time", 0xa33c485, &__vdso_time_sym},
   161  	{"__vdso_gettimeofday", 0x315ca59, &__vdso_gettimeofday_sym},
   162  	{"__vdso_clock_gettime", 0xd35ec75, &__vdso_clock_gettime_sym},
   163  }
   164  
   165  // initialize with vsyscall fallbacks
   166  var (
   167  	__vdso_time_sym          uintptr = 0xffffffffff600400
   168  	__vdso_gettimeofday_sym  uintptr = 0xffffffffff600000
   169  	__vdso_clock_gettime_sym uintptr = 0
   170  )
   171  
   172  func vdso_init_from_sysinfo_ehdr(info *vdso_info, hdr *elf64Ehdr) {
   173  	info.valid = false
   174  	info.load_addr = uintptr(unsafe.Pointer(hdr))
   175  
   176  	pt := unsafe.Pointer(info.load_addr + uintptr(hdr.e_phoff))
   177  
   178  	// We need two things from the segment table: the load offset
   179  	// and the dynamic table.
   180  	var found_vaddr bool
   181  	var dyn *[1 << 20]elf64Dyn
   182  	for i := uint16(0); i < hdr.e_phnum; i++ {
   183  		pt := (*elf64Phdr)(add(pt, uintptr(i)*unsafe.Sizeof(elf64Phdr{})))
   184  		switch pt.p_type {
   185  		case _PT_LOAD:
   186  			if !found_vaddr {
   187  				found_vaddr = true
   188  				info.load_offset = info.load_addr + uintptr(pt.p_offset-pt.p_vaddr)
   189  			}
   190  
   191  		case _PT_DYNAMIC:
   192  			dyn = (*[1 << 20]elf64Dyn)(unsafe.Pointer(info.load_addr + uintptr(pt.p_offset)))
   193  		}
   194  	}
   195  
   196  	if !found_vaddr || dyn == nil {
   197  		return // Failed
   198  	}
   199  
   200  	// Fish out the useful bits of the dynamic table.
   201  
   202  	var hash *[1 << 30]uint32
   203  	hash = nil
   204  	info.symstrings = nil
   205  	info.symtab = nil
   206  	info.versym = nil
   207  	info.verdef = nil
   208  	for i := 0; dyn[i].d_tag != _DT_NULL; i++ {
   209  		dt := &dyn[i]
   210  		p := info.load_offset + uintptr(dt.d_val)
   211  		switch dt.d_tag {
   212  		case _DT_STRTAB:
   213  			info.symstrings = (*[1 << 32]byte)(unsafe.Pointer(p))
   214  		case _DT_SYMTAB:
   215  			info.symtab = (*[1 << 32]elf64Sym)(unsafe.Pointer(p))
   216  		case _DT_HASH:
   217  			hash = (*[1 << 30]uint32)(unsafe.Pointer(p))
   218  		case _DT_VERSYM:
   219  			info.versym = (*[1 << 32]uint16)(unsafe.Pointer(p))
   220  		case _DT_VERDEF:
   221  			info.verdef = (*elf64Verdef)(unsafe.Pointer(p))
   222  		}
   223  	}
   224  
   225  	if info.symstrings == nil || info.symtab == nil || hash == nil {
   226  		return // Failed
   227  	}
   228  
   229  	if info.verdef == nil {
   230  		info.versym = nil
   231  	}
   232  
   233  	// Parse the hash table header.
   234  	nbucket := hash[0]
   235  	nchain := hash[1]
   236  	info.bucket = hash[2 : 2+nbucket]
   237  	info.chain = hash[2+nbucket : 2+nbucket+nchain]
   238  
   239  	// That's all we need.
   240  	info.valid = true
   241  }
   242  
   243  func vdso_find_version(info *vdso_info, ver *version_key) int32 {
   244  	if !info.valid {
   245  		return 0
   246  	}
   247  
   248  	def := info.verdef
   249  	for {
   250  		if def.vd_flags&_VER_FLG_BASE == 0 {
   251  			aux := (*elf64Verdaux)(add(unsafe.Pointer(def), uintptr(def.vd_aux)))
   252  			if def.vd_hash == ver.ver_hash && ver.version == gostringnocopy(&info.symstrings[aux.vda_name]) {
   253  				return int32(def.vd_ndx & 0x7fff)
   254  			}
   255  		}
   256  
   257  		if def.vd_next == 0 {
   258  			break
   259  		}
   260  		def = (*elf64Verdef)(add(unsafe.Pointer(def), uintptr(def.vd_next)))
   261  	}
   262  
   263  	return -1 // can not match any version
   264  }
   265  
   266  func vdso_parse_symbols(info *vdso_info, version int32) {
   267  	if !info.valid {
   268  		return
   269  	}
   270  
   271  	for _, k := range sym_keys {
   272  		for chain := info.bucket[k.sym_hash%uint32(len(info.bucket))]; chain != 0; chain = info.chain[chain] {
   273  			sym := &info.symtab[chain]
   274  			typ := _ELF64_ST_TYPE(sym.st_info)
   275  			bind := _ELF64_ST_BIND(sym.st_info)
   276  			if typ != _STT_FUNC || bind != _STB_GLOBAL && bind != _STB_WEAK || sym.st_shndx == _SHN_UNDEF {
   277  				continue
   278  			}
   279  			if k.name != gostringnocopy(&info.symstrings[sym.st_name]) {
   280  				continue
   281  			}
   282  
   283  			// Check symbol version.
   284  			if info.versym != nil && version != 0 && int32(info.versym[chain]&0x7fff) != version {
   285  				continue
   286  			}
   287  
   288  			*k.ptr = info.load_offset + uintptr(sym.st_value)
   289  			break
   290  		}
   291  	}
   292  }
   293  
   294  func sysargs(argc int32, argv **byte) {
   295  	n := argc + 1
   296  
   297  	// skip envp to get to ELF auxiliary vector.
   298  	for argv_index(argv, n) != nil {
   299  		n++
   300  	}
   301  
   302  	// skip NULL separator
   303  	n++
   304  
   305  	// now argv+n is auxv
   306  	auxv := (*[1 << 32]elf64Auxv)(add(unsafe.Pointer(argv), uintptr(n)*ptrSize))
   307  
   308  	for i := 0; auxv[i].a_type != _AT_NULL; i++ {
   309  		av := &auxv[i]
   310  		switch av.a_type {
   311  		case _AT_SYSINFO_EHDR:
   312  			if av.a_val == 0 {
   313  				// Something went wrong
   314  				continue
   315  			}
   316  			var info vdso_info
   317  			// TODO(rsc): I don't understand why the compiler thinks info escapes
   318  			// when passed to the three functions below.
   319  			info1 := (*vdso_info)(noescape(unsafe.Pointer(&info)))
   320  			vdso_init_from_sysinfo_ehdr(info1, (*elf64Ehdr)(unsafe.Pointer(uintptr(av.a_val))))
   321  			vdso_parse_symbols(info1, vdso_find_version(info1, &linux26))
   322  
   323  		case _AT_RANDOM:
   324  			startupRandomData = (*[16]byte)(unsafe.Pointer(uintptr(av.a_val)))[:]
   325  		}
   326  	}
   327  }