rsc.io/go@v0.0.0-20150416155037-e040fd465409/src/strings/strings.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package strings implements simple functions to manipulate strings.
     6  package strings
     7  
     8  import (
     9  	"unicode"
    10  	"unicode/utf8"
    11  )
    12  
    13  // explode splits s into an array of UTF-8 sequences, one per Unicode character (still strings) up to a maximum of n (n < 0 means no limit).
    14  // Invalid UTF-8 sequences become correct encodings of U+FFF8.
    15  func explode(s string, n int) []string {
    16  	if n == 0 {
    17  		return nil
    18  	}
    19  	l := utf8.RuneCountInString(s)
    20  	if n <= 0 || n > l {
    21  		n = l
    22  	}
    23  	a := make([]string, n)
    24  	var size int
    25  	var ch rune
    26  	i, cur := 0, 0
    27  	for ; i+1 < n; i++ {
    28  		ch, size = utf8.DecodeRuneInString(s[cur:])
    29  		if ch == utf8.RuneError {
    30  			a[i] = string(utf8.RuneError)
    31  		} else {
    32  			a[i] = s[cur : cur+size]
    33  		}
    34  		cur += size
    35  	}
    36  	// add the rest, if there is any
    37  	if cur < len(s) {
    38  		a[i] = s[cur:]
    39  	}
    40  	return a
    41  }
    42  
    43  // primeRK is the prime base used in Rabin-Karp algorithm.
    44  const primeRK = 16777619
    45  
    46  // hashStr returns the hash and the appropriate multiplicative
    47  // factor for use in Rabin-Karp algorithm.
    48  func hashStr(sep string) (uint32, uint32) {
    49  	hash := uint32(0)
    50  	for i := 0; i < len(sep); i++ {
    51  		hash = hash*primeRK + uint32(sep[i])
    52  	}
    53  	var pow, sq uint32 = 1, primeRK
    54  	for i := len(sep); i > 0; i >>= 1 {
    55  		if i&1 != 0 {
    56  			pow *= sq
    57  		}
    58  		sq *= sq
    59  	}
    60  	return hash, pow
    61  }
    62  
    63  // hashStrRev returns the hash of the reverse of sep and the
    64  // appropriate multiplicative factor for use in Rabin-Karp algorithm.
    65  func hashStrRev(sep string) (uint32, uint32) {
    66  	hash := uint32(0)
    67  	for i := len(sep) - 1; i >= 0; i-- {
    68  		hash = hash*primeRK + uint32(sep[i])
    69  	}
    70  	var pow, sq uint32 = 1, primeRK
    71  	for i := len(sep); i > 0; i >>= 1 {
    72  		if i&1 != 0 {
    73  			pow *= sq
    74  		}
    75  		sq *= sq
    76  	}
    77  	return hash, pow
    78  }
    79  
    80  // Count counts the number of non-overlapping instances of sep in s.
    81  // If sep is an empty string, Count returns 1 + the number of Unicode code points in s.
    82  func Count(s, sep string) int {
    83  	n := 0
    84  	// special cases
    85  	switch {
    86  	case len(sep) == 0:
    87  		return utf8.RuneCountInString(s) + 1
    88  	case len(sep) == 1:
    89  		// special case worth making fast
    90  		c := sep[0]
    91  		for i := 0; i < len(s); i++ {
    92  			if s[i] == c {
    93  				n++
    94  			}
    95  		}
    96  		return n
    97  	case len(sep) > len(s):
    98  		return 0
    99  	case len(sep) == len(s):
   100  		if sep == s {
   101  			return 1
   102  		}
   103  		return 0
   104  	}
   105  	// Rabin-Karp search
   106  	hashsep, pow := hashStr(sep)
   107  	h := uint32(0)
   108  	for i := 0; i < len(sep); i++ {
   109  		h = h*primeRK + uint32(s[i])
   110  	}
   111  	lastmatch := 0
   112  	if h == hashsep && s[:len(sep)] == sep {
   113  		n++
   114  		lastmatch = len(sep)
   115  	}
   116  	for i := len(sep); i < len(s); {
   117  		h *= primeRK
   118  		h += uint32(s[i])
   119  		h -= pow * uint32(s[i-len(sep)])
   120  		i++
   121  		if h == hashsep && lastmatch <= i-len(sep) && s[i-len(sep):i] == sep {
   122  			n++
   123  			lastmatch = i
   124  		}
   125  	}
   126  	return n
   127  }
   128  
   129  // Contains reports whether substr is within s.
   130  func Contains(s, substr string) bool {
   131  	return Index(s, substr) >= 0
   132  }
   133  
   134  // ContainsAny reports whether any Unicode code points in chars are within s.
   135  func ContainsAny(s, chars string) bool {
   136  	return IndexAny(s, chars) >= 0
   137  }
   138  
   139  // ContainsRune reports whether the Unicode code point r is within s.
   140  func ContainsRune(s string, r rune) bool {
   141  	return IndexRune(s, r) >= 0
   142  }
   143  
   144  // Index returns the index of the first instance of sep in s, or -1 if sep is not present in s.
   145  func Index(s, sep string) int {
   146  	n := len(sep)
   147  	switch {
   148  	case n == 0:
   149  		return 0
   150  	case n == 1:
   151  		return IndexByte(s, sep[0])
   152  	case n == len(s):
   153  		if sep == s {
   154  			return 0
   155  		}
   156  		return -1
   157  	case n > len(s):
   158  		return -1
   159  	}
   160  	// Rabin-Karp search
   161  	hashsep, pow := hashStr(sep)
   162  	var h uint32
   163  	for i := 0; i < n; i++ {
   164  		h = h*primeRK + uint32(s[i])
   165  	}
   166  	if h == hashsep && s[:n] == sep {
   167  		return 0
   168  	}
   169  	for i := n; i < len(s); {
   170  		h *= primeRK
   171  		h += uint32(s[i])
   172  		h -= pow * uint32(s[i-n])
   173  		i++
   174  		if h == hashsep && s[i-n:i] == sep {
   175  			return i - n
   176  		}
   177  	}
   178  	return -1
   179  }
   180  
   181  // LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s.
   182  func LastIndex(s, sep string) int {
   183  	n := len(sep)
   184  	switch {
   185  	case n == 0:
   186  		return len(s)
   187  	case n == 1:
   188  		// special case worth making fast
   189  		c := sep[0]
   190  		for i := len(s) - 1; i >= 0; i-- {
   191  			if s[i] == c {
   192  				return i
   193  			}
   194  		}
   195  		return -1
   196  	case n == len(s):
   197  		if sep == s {
   198  			return 0
   199  		}
   200  		return -1
   201  	case n > len(s):
   202  		return -1
   203  	}
   204  	// Rabin-Karp search from the end of the string
   205  	hashsep, pow := hashStrRev(sep)
   206  	last := len(s) - n
   207  	var h uint32
   208  	for i := len(s) - 1; i >= last; i-- {
   209  		h = h*primeRK + uint32(s[i])
   210  	}
   211  	if h == hashsep && s[last:] == sep {
   212  		return last
   213  	}
   214  	for i := last - 1; i >= 0; i-- {
   215  		h *= primeRK
   216  		h += uint32(s[i])
   217  		h -= pow * uint32(s[i+n])
   218  		if h == hashsep && s[i:i+n] == sep {
   219  			return i
   220  		}
   221  	}
   222  	return -1
   223  }
   224  
   225  // IndexRune returns the index of the first instance of the Unicode code point
   226  // r, or -1 if rune is not present in s.
   227  func IndexRune(s string, r rune) int {
   228  	switch {
   229  	case r < utf8.RuneSelf:
   230  		return IndexByte(s, byte(r))
   231  	default:
   232  		for i, c := range s {
   233  			if c == r {
   234  				return i
   235  			}
   236  		}
   237  	}
   238  	return -1
   239  }
   240  
   241  // IndexAny returns the index of the first instance of any Unicode code point
   242  // from chars in s, or -1 if no Unicode code point from chars is present in s.
   243  func IndexAny(s, chars string) int {
   244  	if len(chars) > 0 {
   245  		for i, c := range s {
   246  			for _, m := range chars {
   247  				if c == m {
   248  					return i
   249  				}
   250  			}
   251  		}
   252  	}
   253  	return -1
   254  }
   255  
   256  // LastIndexAny returns the index of the last instance of any Unicode code
   257  // point from chars in s, or -1 if no Unicode code point from chars is
   258  // present in s.
   259  func LastIndexAny(s, chars string) int {
   260  	if len(chars) > 0 {
   261  		for i := len(s); i > 0; {
   262  			rune, size := utf8.DecodeLastRuneInString(s[0:i])
   263  			i -= size
   264  			for _, m := range chars {
   265  				if rune == m {
   266  					return i
   267  				}
   268  			}
   269  		}
   270  	}
   271  	return -1
   272  }
   273  
   274  // Generic split: splits after each instance of sep,
   275  // including sepSave bytes of sep in the subarrays.
   276  func genSplit(s, sep string, sepSave, n int) []string {
   277  	if n == 0 {
   278  		return nil
   279  	}
   280  	if sep == "" {
   281  		return explode(s, n)
   282  	}
   283  	if n < 0 {
   284  		n = Count(s, sep) + 1
   285  	}
   286  	c := sep[0]
   287  	start := 0
   288  	a := make([]string, n)
   289  	na := 0
   290  	for i := 0; i+len(sep) <= len(s) && na+1 < n; i++ {
   291  		if s[i] == c && (len(sep) == 1 || s[i:i+len(sep)] == sep) {
   292  			a[na] = s[start : i+sepSave]
   293  			na++
   294  			start = i + len(sep)
   295  			i += len(sep) - 1
   296  		}
   297  	}
   298  	a[na] = s[start:]
   299  	return a[0 : na+1]
   300  }
   301  
   302  // SplitN slices s into substrings separated by sep and returns a slice of
   303  // the substrings between those separators.
   304  // If sep is empty, SplitN splits after each UTF-8 sequence.
   305  // The count determines the number of substrings to return:
   306  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   307  //   n == 0: the result is nil (zero substrings)
   308  //   n < 0: all substrings
   309  func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
   310  
   311  // SplitAfterN slices s into substrings after each instance of sep and
   312  // returns a slice of those substrings.
   313  // If sep is empty, SplitAfterN splits after each UTF-8 sequence.
   314  // The count determines the number of substrings to return:
   315  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   316  //   n == 0: the result is nil (zero substrings)
   317  //   n < 0: all substrings
   318  func SplitAfterN(s, sep string, n int) []string {
   319  	return genSplit(s, sep, len(sep), n)
   320  }
   321  
   322  // Split slices s into all substrings separated by sep and returns a slice of
   323  // the substrings between those separators.
   324  // If sep is empty, Split splits after each UTF-8 sequence.
   325  // It is equivalent to SplitN with a count of -1.
   326  func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
   327  
   328  // SplitAfter slices s into all substrings after each instance of sep and
   329  // returns a slice of those substrings.
   330  // If sep is empty, SplitAfter splits after each UTF-8 sequence.
   331  // It is equivalent to SplitAfterN with a count of -1.
   332  func SplitAfter(s, sep string) []string {
   333  	return genSplit(s, sep, len(sep), -1)
   334  }
   335  
   336  // Fields splits the string s around each instance of one or more consecutive white space
   337  // characters, as defined by unicode.IsSpace, returning an array of substrings of s or an
   338  // empty list if s contains only white space.
   339  func Fields(s string) []string {
   340  	return FieldsFunc(s, unicode.IsSpace)
   341  }
   342  
   343  // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
   344  // and returns an array of slices of s. If all code points in s satisfy f(c) or the
   345  // string is empty, an empty slice is returned.
   346  // FieldsFunc makes no guarantees about the order in which it calls f(c).
   347  // If f does not return consistent results for a given c, FieldsFunc may crash.
   348  func FieldsFunc(s string, f func(rune) bool) []string {
   349  	// First count the fields.
   350  	n := 0
   351  	inField := false
   352  	for _, rune := range s {
   353  		wasInField := inField
   354  		inField = !f(rune)
   355  		if inField && !wasInField {
   356  			n++
   357  		}
   358  	}
   359  
   360  	// Now create them.
   361  	a := make([]string, n)
   362  	na := 0
   363  	fieldStart := -1 // Set to -1 when looking for start of field.
   364  	for i, rune := range s {
   365  		if f(rune) {
   366  			if fieldStart >= 0 {
   367  				a[na] = s[fieldStart:i]
   368  				na++
   369  				fieldStart = -1
   370  			}
   371  		} else if fieldStart == -1 {
   372  			fieldStart = i
   373  		}
   374  	}
   375  	if fieldStart >= 0 { // Last field might end at EOF.
   376  		a[na] = s[fieldStart:]
   377  	}
   378  	return a
   379  }
   380  
   381  // Join concatenates the elements of a to create a single string.   The separator string
   382  // sep is placed between elements in the resulting string.
   383  func Join(a []string, sep string) string {
   384  	if len(a) == 0 {
   385  		return ""
   386  	}
   387  	if len(a) == 1 {
   388  		return a[0]
   389  	}
   390  	n := len(sep) * (len(a) - 1)
   391  	for i := 0; i < len(a); i++ {
   392  		n += len(a[i])
   393  	}
   394  
   395  	b := make([]byte, n)
   396  	bp := copy(b, a[0])
   397  	for _, s := range a[1:] {
   398  		bp += copy(b[bp:], sep)
   399  		bp += copy(b[bp:], s)
   400  	}
   401  	return string(b)
   402  }
   403  
   404  // HasPrefix tests whether the string s begins with prefix.
   405  func HasPrefix(s, prefix string) bool {
   406  	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
   407  }
   408  
   409  // HasSuffix tests whether the string s ends with suffix.
   410  func HasSuffix(s, suffix string) bool {
   411  	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
   412  }
   413  
   414  // Map returns a copy of the string s with all its characters modified
   415  // according to the mapping function. If mapping returns a negative value, the character is
   416  // dropped from the string with no replacement.
   417  func Map(mapping func(rune) rune, s string) string {
   418  	// In the worst case, the string can grow when mapped, making
   419  	// things unpleasant.  But it's so rare we barge in assuming it's
   420  	// fine.  It could also shrink but that falls out naturally.
   421  	maxbytes := len(s) // length of b
   422  	nbytes := 0        // number of bytes encoded in b
   423  	// The output buffer b is initialized on demand, the first
   424  	// time a character differs.
   425  	var b []byte
   426  
   427  	for i, c := range s {
   428  		r := mapping(c)
   429  		if b == nil {
   430  			if r == c {
   431  				continue
   432  			}
   433  			b = make([]byte, maxbytes)
   434  			nbytes = copy(b, s[:i])
   435  		}
   436  		if r >= 0 {
   437  			wid := 1
   438  			if r >= utf8.RuneSelf {
   439  				wid = utf8.RuneLen(r)
   440  			}
   441  			if nbytes+wid > maxbytes {
   442  				// Grow the buffer.
   443  				maxbytes = maxbytes*2 + utf8.UTFMax
   444  				nb := make([]byte, maxbytes)
   445  				copy(nb, b[0:nbytes])
   446  				b = nb
   447  			}
   448  			nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r)
   449  		}
   450  	}
   451  	if b == nil {
   452  		return s
   453  	}
   454  	return string(b[0:nbytes])
   455  }
   456  
   457  // Repeat returns a new string consisting of count copies of the string s.
   458  func Repeat(s string, count int) string {
   459  	b := make([]byte, len(s)*count)
   460  	bp := copy(b, s)
   461  	for bp < len(b) {
   462  		copy(b[bp:], b[:bp])
   463  		bp *= 2
   464  	}
   465  	return string(b)
   466  }
   467  
   468  // ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case.
   469  func ToUpper(s string) string { return Map(unicode.ToUpper, s) }
   470  
   471  // ToLower returns a copy of the string s with all Unicode letters mapped to their lower case.
   472  func ToLower(s string) string { return Map(unicode.ToLower, s) }
   473  
   474  // ToTitle returns a copy of the string s with all Unicode letters mapped to their title case.
   475  func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
   476  
   477  // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
   478  // upper case, giving priority to the special casing rules.
   479  func ToUpperSpecial(_case unicode.SpecialCase, s string) string {
   480  	return Map(func(r rune) rune { return _case.ToUpper(r) }, s)
   481  }
   482  
   483  // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
   484  // lower case, giving priority to the special casing rules.
   485  func ToLowerSpecial(_case unicode.SpecialCase, s string) string {
   486  	return Map(func(r rune) rune { return _case.ToLower(r) }, s)
   487  }
   488  
   489  // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
   490  // title case, giving priority to the special casing rules.
   491  func ToTitleSpecial(_case unicode.SpecialCase, s string) string {
   492  	return Map(func(r rune) rune { return _case.ToTitle(r) }, s)
   493  }
   494  
   495  // isSeparator reports whether the rune could mark a word boundary.
   496  // TODO: update when package unicode captures more of the properties.
   497  func isSeparator(r rune) bool {
   498  	// ASCII alphanumerics and underscore are not separators
   499  	if r <= 0x7F {
   500  		switch {
   501  		case '0' <= r && r <= '9':
   502  			return false
   503  		case 'a' <= r && r <= 'z':
   504  			return false
   505  		case 'A' <= r && r <= 'Z':
   506  			return false
   507  		case r == '_':
   508  			return false
   509  		}
   510  		return true
   511  	}
   512  	// Letters and digits are not separators
   513  	if unicode.IsLetter(r) || unicode.IsDigit(r) {
   514  		return false
   515  	}
   516  	// Otherwise, all we can do for now is treat spaces as separators.
   517  	return unicode.IsSpace(r)
   518  }
   519  
   520  // Title returns a copy of the string s with all Unicode letters that begin words
   521  // mapped to their title case.
   522  //
   523  // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
   524  func Title(s string) string {
   525  	// Use a closure here to remember state.
   526  	// Hackish but effective. Depends on Map scanning in order and calling
   527  	// the closure once per rune.
   528  	prev := ' '
   529  	return Map(
   530  		func(r rune) rune {
   531  			if isSeparator(prev) {
   532  				prev = r
   533  				return unicode.ToTitle(r)
   534  			}
   535  			prev = r
   536  			return r
   537  		},
   538  		s)
   539  }
   540  
   541  // TrimLeftFunc returns a slice of the string s with all leading
   542  // Unicode code points c satisfying f(c) removed.
   543  func TrimLeftFunc(s string, f func(rune) bool) string {
   544  	i := indexFunc(s, f, false)
   545  	if i == -1 {
   546  		return ""
   547  	}
   548  	return s[i:]
   549  }
   550  
   551  // TrimRightFunc returns a slice of the string s with all trailing
   552  // Unicode code points c satisfying f(c) removed.
   553  func TrimRightFunc(s string, f func(rune) bool) string {
   554  	i := lastIndexFunc(s, f, false)
   555  	if i >= 0 && s[i] >= utf8.RuneSelf {
   556  		_, wid := utf8.DecodeRuneInString(s[i:])
   557  		i += wid
   558  	} else {
   559  		i++
   560  	}
   561  	return s[0:i]
   562  }
   563  
   564  // TrimFunc returns a slice of the string s with all leading
   565  // and trailing Unicode code points c satisfying f(c) removed.
   566  func TrimFunc(s string, f func(rune) bool) string {
   567  	return TrimRightFunc(TrimLeftFunc(s, f), f)
   568  }
   569  
   570  // IndexFunc returns the index into s of the first Unicode
   571  // code point satisfying f(c), or -1 if none do.
   572  func IndexFunc(s string, f func(rune) bool) int {
   573  	return indexFunc(s, f, true)
   574  }
   575  
   576  // LastIndexFunc returns the index into s of the last
   577  // Unicode code point satisfying f(c), or -1 if none do.
   578  func LastIndexFunc(s string, f func(rune) bool) int {
   579  	return lastIndexFunc(s, f, true)
   580  }
   581  
   582  // indexFunc is the same as IndexFunc except that if
   583  // truth==false, the sense of the predicate function is
   584  // inverted.
   585  func indexFunc(s string, f func(rune) bool, truth bool) int {
   586  	start := 0
   587  	for start < len(s) {
   588  		wid := 1
   589  		r := rune(s[start])
   590  		if r >= utf8.RuneSelf {
   591  			r, wid = utf8.DecodeRuneInString(s[start:])
   592  		}
   593  		if f(r) == truth {
   594  			return start
   595  		}
   596  		start += wid
   597  	}
   598  	return -1
   599  }
   600  
   601  // lastIndexFunc is the same as LastIndexFunc except that if
   602  // truth==false, the sense of the predicate function is
   603  // inverted.
   604  func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
   605  	for i := len(s); i > 0; {
   606  		r, size := utf8.DecodeLastRuneInString(s[0:i])
   607  		i -= size
   608  		if f(r) == truth {
   609  			return i
   610  		}
   611  	}
   612  	return -1
   613  }
   614  
   615  func makeCutsetFunc(cutset string) func(rune) bool {
   616  	return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
   617  }
   618  
   619  // Trim returns a slice of the string s with all leading and
   620  // trailing Unicode code points contained in cutset removed.
   621  func Trim(s string, cutset string) string {
   622  	if s == "" || cutset == "" {
   623  		return s
   624  	}
   625  	return TrimFunc(s, makeCutsetFunc(cutset))
   626  }
   627  
   628  // TrimLeft returns a slice of the string s with all leading
   629  // Unicode code points contained in cutset removed.
   630  func TrimLeft(s string, cutset string) string {
   631  	if s == "" || cutset == "" {
   632  		return s
   633  	}
   634  	return TrimLeftFunc(s, makeCutsetFunc(cutset))
   635  }
   636  
   637  // TrimRight returns a slice of the string s, with all trailing
   638  // Unicode code points contained in cutset removed.
   639  func TrimRight(s string, cutset string) string {
   640  	if s == "" || cutset == "" {
   641  		return s
   642  	}
   643  	return TrimRightFunc(s, makeCutsetFunc(cutset))
   644  }
   645  
   646  // TrimSpace returns a slice of the string s, with all leading
   647  // and trailing white space removed, as defined by Unicode.
   648  func TrimSpace(s string) string {
   649  	return TrimFunc(s, unicode.IsSpace)
   650  }
   651  
   652  // TrimPrefix returns s without the provided leading prefix string.
   653  // If s doesn't start with prefix, s is returned unchanged.
   654  func TrimPrefix(s, prefix string) string {
   655  	if HasPrefix(s, prefix) {
   656  		return s[len(prefix):]
   657  	}
   658  	return s
   659  }
   660  
   661  // TrimSuffix returns s without the provided trailing suffix string.
   662  // If s doesn't end with suffix, s is returned unchanged.
   663  func TrimSuffix(s, suffix string) string {
   664  	if HasSuffix(s, suffix) {
   665  		return s[:len(s)-len(suffix)]
   666  	}
   667  	return s
   668  }
   669  
   670  // Replace returns a copy of the string s with the first n
   671  // non-overlapping instances of old replaced by new.
   672  // If old is empty, it matches at the beginning of the string
   673  // and after each UTF-8 sequence, yielding up to k+1 replacements
   674  // for a k-rune string.
   675  // If n < 0, there is no limit on the number of replacements.
   676  func Replace(s, old, new string, n int) string {
   677  	if old == new || n == 0 {
   678  		return s // avoid allocation
   679  	}
   680  
   681  	// Compute number of replacements.
   682  	if m := Count(s, old); m == 0 {
   683  		return s // avoid allocation
   684  	} else if n < 0 || m < n {
   685  		n = m
   686  	}
   687  
   688  	// Apply replacements to buffer.
   689  	t := make([]byte, len(s)+n*(len(new)-len(old)))
   690  	w := 0
   691  	start := 0
   692  	for i := 0; i < n; i++ {
   693  		j := start
   694  		if len(old) == 0 {
   695  			if i > 0 {
   696  				_, wid := utf8.DecodeRuneInString(s[start:])
   697  				j += wid
   698  			}
   699  		} else {
   700  			j += Index(s[start:], old)
   701  		}
   702  		w += copy(t[w:], s[start:j])
   703  		w += copy(t[w:], new)
   704  		start = j + len(old)
   705  	}
   706  	w += copy(t[w:], s[start:])
   707  	return string(t[0:w])
   708  }
   709  
   710  // EqualFold reports whether s and t, interpreted as UTF-8 strings,
   711  // are equal under Unicode case-folding.
   712  func EqualFold(s, t string) bool {
   713  	for s != "" && t != "" {
   714  		// Extract first rune from each string.
   715  		var sr, tr rune
   716  		if s[0] < utf8.RuneSelf {
   717  			sr, s = rune(s[0]), s[1:]
   718  		} else {
   719  			r, size := utf8.DecodeRuneInString(s)
   720  			sr, s = r, s[size:]
   721  		}
   722  		if t[0] < utf8.RuneSelf {
   723  			tr, t = rune(t[0]), t[1:]
   724  		} else {
   725  			r, size := utf8.DecodeRuneInString(t)
   726  			tr, t = r, t[size:]
   727  		}
   728  
   729  		// If they match, keep going; if not, return false.
   730  
   731  		// Easy case.
   732  		if tr == sr {
   733  			continue
   734  		}
   735  
   736  		// Make sr < tr to simplify what follows.
   737  		if tr < sr {
   738  			tr, sr = sr, tr
   739  		}
   740  		// Fast check for ASCII.
   741  		if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' {
   742  			// ASCII, and sr is upper case.  tr must be lower case.
   743  			if tr == sr+'a'-'A' {
   744  				continue
   745  			}
   746  			return false
   747  		}
   748  
   749  		// General case.  SimpleFold(x) returns the next equivalent rune > x
   750  		// or wraps around to smaller values.
   751  		r := unicode.SimpleFold(sr)
   752  		for r != sr && r < tr {
   753  			r = unicode.SimpleFold(r)
   754  		}
   755  		if r == tr {
   756  			continue
   757  		}
   758  		return false
   759  	}
   760  
   761  	// One string is empty.  Are both?
   762  	return s == t
   763  }