tinygo.org/x/drivers@v0.27.1-0.20240509133757-7dbca2a54349/image/internal/compress/flate/deflate.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package flate 6 7 import ( 8 "fmt" 9 "io" 10 "math" 11 ) 12 13 const ( 14 NoCompression = 0 15 BestSpeed = 1 16 BestCompression = 9 17 DefaultCompression = -1 18 19 // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman 20 // entropy encoding. This mode is useful in compressing data that has 21 // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4) 22 // that lacks an entropy encoder. Compression gains are achieved when 23 // certain bytes in the input stream occur more frequently than others. 24 // 25 // Note that HuffmanOnly produces a compressed output that is 26 // RFC 1951 compliant. That is, any valid DEFLATE decompressor will 27 // continue to be able to decompress this output. 28 HuffmanOnly = -2 29 ) 30 31 const ( 32 logWindowSize = 15 33 windowSize = 1 << logWindowSize 34 windowMask = windowSize - 1 35 36 // The LZ77 step produces a sequence of literal tokens and <length, offset> 37 // pair tokens. The offset is also known as distance. The underlying wire 38 // format limits the range of lengths and offsets. For example, there are 39 // 256 legitimate lengths: those in the range [3, 258]. This package's 40 // compressor uses a higher minimum match length, enabling optimizations 41 // such as finding matches via 32-bit loads and compares. 42 baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5 43 minMatchLength = 4 // The smallest match length that the compressor actually emits 44 maxMatchLength = 258 // The largest match length 45 baseMatchOffset = 1 // The smallest match offset 46 maxMatchOffset = 1 << 15 // The largest match offset 47 48 // The maximum number of tokens we put into a single flate block, just to 49 // stop things from getting too large. 50 maxFlateBlockTokens = 1 << 14 51 maxStoreBlockSize = 65535 52 hashBits = 17 // After 17 performance degrades 53 hashSize = 1 << hashBits 54 hashMask = (1 << hashBits) - 1 55 maxHashOffset = 1 << 24 56 57 skipNever = math.MaxInt32 58 ) 59 60 type compressionLevel struct { 61 level, good, lazy, nice, chain, fastSkipHashing int 62 } 63 64 var levels = []compressionLevel{ 65 {0, 0, 0, 0, 0, 0}, // NoCompression. 66 {1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go. 67 // For levels 2-3 we don't bother trying with lazy matches. 68 {2, 4, 0, 16, 8, 5}, 69 {3, 4, 0, 32, 32, 6}, 70 // Levels 4-9 use increasingly more lazy matching 71 // and increasingly stringent conditions for "good enough". 72 {4, 4, 4, 16, 16, skipNever}, 73 {5, 8, 16, 32, 32, skipNever}, 74 {6, 8, 16, 128, 128, skipNever}, 75 {7, 8, 32, 128, 256, skipNever}, 76 {8, 32, 128, 258, 1024, skipNever}, 77 {9, 32, 258, 258, 4096, skipNever}, 78 } 79 80 type compressor struct { 81 compressionLevel 82 83 w *huffmanBitWriter 84 bulkHasher func([]byte, []uint32) 85 86 // compression algorithm 87 fill func(*compressor, []byte) int // copy data to window 88 step func(*compressor) // process window 89 sync bool // requesting flush 90 bestSpeed *deflateFast // Encoder for BestSpeed 91 92 // Input hash chains 93 // hashHead[hashValue] contains the largest inputIndex with the specified hash value 94 // If hashHead[hashValue] is within the current window, then 95 // hashPrev[hashHead[hashValue] & windowMask] contains the previous index 96 // with the same hash value. 97 chainHead int 98 hashHead [hashSize]uint32 99 hashPrev [windowSize]uint32 100 hashOffset int 101 102 // input window: unprocessed data is window[index:windowEnd] 103 index int 104 window []byte 105 windowEnd int 106 blockStart int // window index where current tokens start 107 byteAvailable bool // if true, still need to process window[index-1]. 108 109 // queued output tokens 110 tokens []token 111 112 // deflate state 113 length int 114 offset int 115 hash uint32 116 maxInsertIndex int 117 err error 118 119 // hashMatch must be able to contain hashes for the maximum match length. 120 hashMatch [maxMatchLength - 1]uint32 121 } 122 123 func (d *compressor) fillDeflate(b []byte) int { 124 if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) { 125 // shift the window by windowSize 126 copy(d.window, d.window[windowSize:2*windowSize]) 127 d.index -= windowSize 128 d.windowEnd -= windowSize 129 if d.blockStart >= windowSize { 130 d.blockStart -= windowSize 131 } else { 132 d.blockStart = math.MaxInt32 133 } 134 d.hashOffset += windowSize 135 if d.hashOffset > maxHashOffset { 136 delta := d.hashOffset - 1 137 d.hashOffset -= delta 138 d.chainHead -= delta 139 140 // Iterate over slices instead of arrays to avoid copying 141 // the entire table onto the stack (Issue #18625). 142 for i, v := range d.hashPrev[:] { 143 if int(v) > delta { 144 d.hashPrev[i] = uint32(int(v) - delta) 145 } else { 146 d.hashPrev[i] = 0 147 } 148 } 149 for i, v := range d.hashHead[:] { 150 if int(v) > delta { 151 d.hashHead[i] = uint32(int(v) - delta) 152 } else { 153 d.hashHead[i] = 0 154 } 155 } 156 } 157 } 158 n := copy(d.window[d.windowEnd:], b) 159 d.windowEnd += n 160 return n 161 } 162 163 func (d *compressor) writeBlock(tokens []token, index int) error { 164 if index > 0 { 165 var window []byte 166 if d.blockStart <= index { 167 window = d.window[d.blockStart:index] 168 } 169 d.blockStart = index 170 d.w.writeBlock(tokens, false, window) 171 return d.w.err 172 } 173 return nil 174 } 175 176 // fillWindow will fill the current window with the supplied 177 // dictionary and calculate all hashes. 178 // This is much faster than doing a full encode. 179 // Should only be used after a reset. 180 func (d *compressor) fillWindow(b []byte) { 181 // Do not fill window if we are in store-only mode. 182 if d.compressionLevel.level < 2 { 183 return 184 } 185 if d.index != 0 || d.windowEnd != 0 { 186 panic("internal error: fillWindow called with stale data") 187 } 188 189 // If we are given too much, cut it. 190 if len(b) > windowSize { 191 b = b[len(b)-windowSize:] 192 } 193 // Add all to window. 194 n := copy(d.window, b) 195 196 // Calculate 256 hashes at the time (more L1 cache hits) 197 loops := (n + 256 - minMatchLength) / 256 198 for j := 0; j < loops; j++ { 199 index := j * 256 200 end := index + 256 + minMatchLength - 1 201 if end > n { 202 end = n 203 } 204 toCheck := d.window[index:end] 205 dstSize := len(toCheck) - minMatchLength + 1 206 207 if dstSize <= 0 { 208 continue 209 } 210 211 dst := d.hashMatch[:dstSize] 212 d.bulkHasher(toCheck, dst) 213 var newH uint32 214 for i, val := range dst { 215 di := i + index 216 newH = val 217 hh := &d.hashHead[newH&hashMask] 218 // Get previous value with the same hash. 219 // Our chain should point to the previous value. 220 d.hashPrev[di&windowMask] = *hh 221 // Set the head of the hash chain to us. 222 *hh = uint32(di + d.hashOffset) 223 } 224 d.hash = newH 225 } 226 // Update window information. 227 d.windowEnd = n 228 d.index = n 229 } 230 231 // Try to find a match starting at index whose length is greater than prevSize. 232 // We only look at chainCount possibilities before giving up. 233 func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) { 234 minMatchLook := maxMatchLength 235 if lookahead < minMatchLook { 236 minMatchLook = lookahead 237 } 238 239 win := d.window[0 : pos+minMatchLook] 240 241 // We quit when we get a match that's at least nice long 242 nice := len(win) - pos 243 if d.nice < nice { 244 nice = d.nice 245 } 246 247 // If we've got a match that's good enough, only look in 1/4 the chain. 248 tries := d.chain 249 length = prevLength 250 if length >= d.good { 251 tries >>= 2 252 } 253 254 wEnd := win[pos+length] 255 wPos := win[pos:] 256 minIndex := pos - windowSize 257 258 for i := prevHead; tries > 0; tries-- { 259 if wEnd == win[i+length] { 260 n := matchLen(win[i:], wPos, minMatchLook) 261 262 if n > length && (n > minMatchLength || pos-i <= 4096) { 263 length = n 264 offset = pos - i 265 ok = true 266 if n >= nice { 267 // The match is good enough that we don't try to find a better one. 268 break 269 } 270 wEnd = win[pos+n] 271 } 272 } 273 if i == minIndex { 274 // hashPrev[i & windowMask] has already been overwritten, so stop now. 275 break 276 } 277 i = int(d.hashPrev[i&windowMask]) - d.hashOffset 278 if i < minIndex || i < 0 { 279 break 280 } 281 } 282 return 283 } 284 285 func (d *compressor) writeStoredBlock(buf []byte) error { 286 if d.w.writeStoredHeader(len(buf), false); d.w.err != nil { 287 return d.w.err 288 } 289 d.w.writeBytes(buf) 290 return d.w.err 291 } 292 293 const hashmul = 0x1e35a7bd 294 295 // hash4 returns a hash representation of the first 4 bytes 296 // of the supplied slice. 297 // The caller must ensure that len(b) >= 4. 298 func hash4(b []byte) uint32 { 299 return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits) 300 } 301 302 // bulkHash4 will compute hashes using the same 303 // algorithm as hash4 304 func bulkHash4(b []byte, dst []uint32) { 305 if len(b) < minMatchLength { 306 return 307 } 308 hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 309 dst[0] = (hb * hashmul) >> (32 - hashBits) 310 end := len(b) - minMatchLength + 1 311 for i := 1; i < end; i++ { 312 hb = (hb << 8) | uint32(b[i+3]) 313 dst[i] = (hb * hashmul) >> (32 - hashBits) 314 } 315 } 316 317 // matchLen returns the number of matching bytes in a and b 318 // up to length 'max'. Both slices must be at least 'max' 319 // bytes in size. 320 func matchLen(a, b []byte, max int) int { 321 a = a[:max] 322 b = b[:len(a)] 323 for i, av := range a { 324 if b[i] != av { 325 return i 326 } 327 } 328 return max 329 } 330 331 // encSpeed will compress and store the currently added data, 332 // if enough has been accumulated or we at the end of the stream. 333 // Any error that occurred will be in d.err 334 func (d *compressor) encSpeed() { 335 // We only compress if we have maxStoreBlockSize. 336 if d.windowEnd < maxStoreBlockSize { 337 if !d.sync { 338 return 339 } 340 341 // Handle small sizes. 342 if d.windowEnd < 128 { 343 switch { 344 case d.windowEnd == 0: 345 return 346 case d.windowEnd <= 16: 347 d.err = d.writeStoredBlock(d.window[:d.windowEnd]) 348 default: 349 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 350 d.err = d.w.err 351 } 352 d.windowEnd = 0 353 d.bestSpeed.reset() 354 return 355 } 356 357 } 358 // Encode the block. 359 d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd]) 360 361 // If we removed less than 1/16th, Huffman compress the block. 362 if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) { 363 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 364 } else { 365 d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd]) 366 } 367 d.err = d.w.err 368 d.windowEnd = 0 369 } 370 371 func (d *compressor) initDeflate() { 372 d.window = make([]byte, 2*windowSize) 373 d.hashOffset = 1 374 d.tokens = make([]token, 0, maxFlateBlockTokens+1) 375 d.length = minMatchLength - 1 376 d.offset = 0 377 d.byteAvailable = false 378 d.index = 0 379 d.hash = 0 380 d.chainHead = -1 381 d.bulkHasher = bulkHash4 382 } 383 384 func (d *compressor) deflate() { 385 if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync { 386 return 387 } 388 389 d.maxInsertIndex = d.windowEnd - (minMatchLength - 1) 390 if d.index < d.maxInsertIndex { 391 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 392 } 393 394 Loop: 395 for { 396 if d.index > d.windowEnd { 397 panic("index > windowEnd") 398 } 399 lookahead := d.windowEnd - d.index 400 if lookahead < minMatchLength+maxMatchLength { 401 if !d.sync { 402 break Loop 403 } 404 if d.index > d.windowEnd { 405 panic("index > windowEnd") 406 } 407 if lookahead == 0 { 408 // Flush current output block if any. 409 if d.byteAvailable { 410 // There is still one pending token that needs to be flushed 411 d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1]))) 412 d.byteAvailable = false 413 } 414 if len(d.tokens) > 0 { 415 if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { 416 return 417 } 418 d.tokens = d.tokens[:0] 419 } 420 break Loop 421 } 422 } 423 if d.index < d.maxInsertIndex { 424 // Update the hash 425 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 426 hh := &d.hashHead[d.hash&hashMask] 427 d.chainHead = int(*hh) 428 d.hashPrev[d.index&windowMask] = uint32(d.chainHead) 429 *hh = uint32(d.index + d.hashOffset) 430 } 431 prevLength := d.length 432 prevOffset := d.offset 433 d.length = minMatchLength - 1 434 d.offset = 0 435 minIndex := d.index - windowSize 436 if minIndex < 0 { 437 minIndex = 0 438 } 439 440 if d.chainHead-d.hashOffset >= minIndex && 441 (d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 || 442 d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) { 443 if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok { 444 d.length = newLength 445 d.offset = newOffset 446 } 447 } 448 if d.fastSkipHashing != skipNever && d.length >= minMatchLength || 449 d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength { 450 // There was a match at the previous step, and the current match is 451 // not better. Output the previous match. 452 if d.fastSkipHashing != skipNever { 453 d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset))) 454 } else { 455 d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset))) 456 } 457 // Insert in the hash table all strings up to the end of the match. 458 // index and index-1 are already inserted. If there is not enough 459 // lookahead, the last two strings are not inserted into the hash 460 // table. 461 if d.length <= d.fastSkipHashing { 462 var newIndex int 463 if d.fastSkipHashing != skipNever { 464 newIndex = d.index + d.length 465 } else { 466 newIndex = d.index + prevLength - 1 467 } 468 index := d.index 469 for index++; index < newIndex; index++ { 470 if index < d.maxInsertIndex { 471 d.hash = hash4(d.window[index : index+minMatchLength]) 472 // Get previous value with the same hash. 473 // Our chain should point to the previous value. 474 hh := &d.hashHead[d.hash&hashMask] 475 d.hashPrev[index&windowMask] = *hh 476 // Set the head of the hash chain to us. 477 *hh = uint32(index + d.hashOffset) 478 } 479 } 480 d.index = index 481 482 if d.fastSkipHashing == skipNever { 483 d.byteAvailable = false 484 d.length = minMatchLength - 1 485 } 486 } else { 487 // For matches this long, we don't bother inserting each individual 488 // item into the table. 489 d.index += d.length 490 if d.index < d.maxInsertIndex { 491 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 492 } 493 } 494 if len(d.tokens) == maxFlateBlockTokens { 495 // The block includes the current character 496 if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { 497 return 498 } 499 d.tokens = d.tokens[:0] 500 } 501 } else { 502 if d.fastSkipHashing != skipNever || d.byteAvailable { 503 i := d.index - 1 504 if d.fastSkipHashing != skipNever { 505 i = d.index 506 } 507 d.tokens = append(d.tokens, literalToken(uint32(d.window[i]))) 508 if len(d.tokens) == maxFlateBlockTokens { 509 if d.err = d.writeBlock(d.tokens, i+1); d.err != nil { 510 return 511 } 512 d.tokens = d.tokens[:0] 513 } 514 } 515 d.index++ 516 if d.fastSkipHashing == skipNever { 517 d.byteAvailable = true 518 } 519 } 520 } 521 } 522 523 func (d *compressor) fillStore(b []byte) int { 524 n := copy(d.window[d.windowEnd:], b) 525 d.windowEnd += n 526 return n 527 } 528 529 func (d *compressor) store() { 530 if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) { 531 d.err = d.writeStoredBlock(d.window[:d.windowEnd]) 532 d.windowEnd = 0 533 } 534 } 535 536 // storeHuff compresses and stores the currently added data 537 // when the d.window is full or we are at the end of the stream. 538 // Any error that occurred will be in d.err 539 func (d *compressor) storeHuff() { 540 if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 { 541 return 542 } 543 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 544 d.err = d.w.err 545 d.windowEnd = 0 546 } 547 548 func (d *compressor) write(b []byte) (n int, err error) { 549 if d.err != nil { 550 return 0, d.err 551 } 552 n = len(b) 553 for len(b) > 0 { 554 d.step(d) 555 b = b[d.fill(d, b):] 556 if d.err != nil { 557 return 0, d.err 558 } 559 } 560 return n, nil 561 } 562 563 func (d *compressor) syncFlush() error { 564 if d.err != nil { 565 return d.err 566 } 567 d.sync = true 568 d.step(d) 569 if d.err == nil { 570 d.w.writeStoredHeader(0, false) 571 d.w.flush() 572 d.err = d.w.err 573 } 574 d.sync = false 575 return d.err 576 } 577 578 func (d *compressor) init(w io.Writer, level int) (err error) { 579 d.w = newHuffmanBitWriter(w) 580 581 switch { 582 case level == NoCompression: 583 d.window = make([]byte, maxStoreBlockSize) 584 d.fill = (*compressor).fillStore 585 d.step = (*compressor).store 586 case level == HuffmanOnly: 587 d.window = make([]byte, maxStoreBlockSize) 588 d.fill = (*compressor).fillStore 589 d.step = (*compressor).storeHuff 590 case level == BestSpeed: 591 d.compressionLevel = levels[level] 592 d.window = make([]byte, maxStoreBlockSize) 593 d.fill = (*compressor).fillStore 594 d.step = (*compressor).encSpeed 595 d.bestSpeed = newDeflateFast() 596 d.tokens = make([]token, maxStoreBlockSize) 597 case level == DefaultCompression: 598 level = 6 599 fallthrough 600 case 2 <= level && level <= 9: 601 d.compressionLevel = levels[level] 602 d.initDeflate() 603 d.fill = (*compressor).fillDeflate 604 d.step = (*compressor).deflate 605 default: 606 return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level) 607 } 608 return nil 609 } 610 611 func (d *compressor) reset(w io.Writer) { 612 d.w.reset(w) 613 d.sync = false 614 d.err = nil 615 switch d.compressionLevel.level { 616 case NoCompression: 617 d.windowEnd = 0 618 case BestSpeed: 619 d.windowEnd = 0 620 d.tokens = d.tokens[:0] 621 d.bestSpeed.reset() 622 default: 623 d.chainHead = -1 624 for i := range d.hashHead { 625 d.hashHead[i] = 0 626 } 627 for i := range d.hashPrev { 628 d.hashPrev[i] = 0 629 } 630 d.hashOffset = 1 631 d.index, d.windowEnd = 0, 0 632 d.blockStart, d.byteAvailable = 0, false 633 d.tokens = d.tokens[:0] 634 d.length = minMatchLength - 1 635 d.offset = 0 636 d.hash = 0 637 d.maxInsertIndex = 0 638 } 639 } 640 641 func (d *compressor) close() error { 642 if d.err != nil { 643 return d.err 644 } 645 d.sync = true 646 d.step(d) 647 if d.err != nil { 648 return d.err 649 } 650 if d.w.writeStoredHeader(0, true); d.w.err != nil { 651 return d.w.err 652 } 653 d.w.flush() 654 return d.w.err 655 } 656 657 // NewWriter returns a new Writer compressing data at the given level. 658 // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression); 659 // higher levels typically run slower but compress more. Level 0 660 // (NoCompression) does not attempt any compression; it only adds the 661 // necessary DEFLATE framing. 662 // Level -1 (DefaultCompression) uses the default compression level. 663 // Level -2 (HuffmanOnly) will use Huffman compression only, giving 664 // a very fast compression for all types of input, but sacrificing considerable 665 // compression efficiency. 666 // 667 // If level is in the range [-2, 9] then the error returned will be nil. 668 // Otherwise the error returned will be non-nil. 669 func NewWriter(w io.Writer, level int) (*Writer, error) { 670 var dw Writer 671 if err := dw.d.init(w, level); err != nil { 672 return nil, err 673 } 674 return &dw, nil 675 } 676 677 // NewWriterDict is like NewWriter but initializes the new 678 // Writer with a preset dictionary. The returned Writer behaves 679 // as if the dictionary had been written to it without producing 680 // any compressed output. The compressed data written to w 681 // can only be decompressed by a Reader initialized with the 682 // same dictionary. 683 func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) { 684 dw := &dictWriter{w} 685 zw, err := NewWriter(dw, level) 686 if err != nil { 687 return nil, err 688 } 689 zw.d.fillWindow(dict) 690 zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method. 691 return zw, err 692 } 693 694 type dictWriter struct { 695 w io.Writer 696 } 697 698 func (w *dictWriter) Write(b []byte) (n int, err error) { 699 return w.w.Write(b) 700 } 701 702 // A Writer takes data written to it and writes the compressed 703 // form of that data to an underlying writer (see NewWriter). 704 type Writer struct { 705 d compressor 706 dict []byte 707 } 708 709 // Write writes data to w, which will eventually write the 710 // compressed form of data to its underlying writer. 711 func (w *Writer) Write(data []byte) (n int, err error) { 712 return w.d.write(data) 713 } 714 715 // Flush flushes any pending data to the underlying writer. 716 // It is useful mainly in compressed network protocols, to ensure that 717 // a remote reader has enough data to reconstruct a packet. 718 // Flush does not return until the data has been written. 719 // Calling Flush when there is no pending data still causes the Writer 720 // to emit a sync marker of at least 4 bytes. 721 // If the underlying writer returns an error, Flush returns that error. 722 // 723 // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH. 724 func (w *Writer) Flush() error { 725 // For more about flushing: 726 // https://www.bolet.org/~pornin/deflate-flush.html 727 return w.d.syncFlush() 728 } 729 730 // Close flushes and closes the writer. 731 func (w *Writer) Close() error { 732 return w.d.close() 733 } 734 735 // Reset discards the writer's state and makes it equivalent to 736 // the result of NewWriter or NewWriterDict called with dst 737 // and w's level and dictionary. 738 func (w *Writer) Reset(dst io.Writer) { 739 if dw, ok := w.d.w.writer.(*dictWriter); ok { 740 // w was created with NewWriterDict 741 dw.w = dst 742 w.d.reset(dw) 743 w.d.fillWindow(w.dict) 744 } else { 745 // w was created with NewWriter 746 w.d.reset(dst) 747 } 748 }