tinygo.org/x/drivers@v0.27.1-0.20240509133757-7dbca2a54349/image/jpeg/reader.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package jpeg implements a JPEG image decoder and encoder. 6 // 7 // JPEG is defined in ITU-T T.81: https://www.w3.org/Graphics/JPEG/itu-t81.pdf. 8 package jpeg 9 10 import ( 11 "image" 12 "image/color" 13 "io" 14 15 "tinygo.org/x/drivers/image/internal/imageutil" 16 ) 17 18 // A FormatError reports that the input is not a valid JPEG. 19 type FormatError string 20 21 func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } 22 23 // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. 24 type UnsupportedError string 25 26 func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } 27 28 var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio") 29 30 // Component specification, specified in section B.2.2. 31 type component struct { 32 h int // Horizontal sampling factor. 33 v int // Vertical sampling factor. 34 c uint8 // Component identifier. 35 tq uint8 // Quantization table destination selector. 36 } 37 38 const ( 39 dcTable = 0 40 acTable = 1 41 maxTc = 1 42 maxTh = 3 43 maxTq = 3 44 45 maxComponents = 4 46 ) 47 48 const ( 49 sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential). 50 sof1Marker = 0xc1 // Start Of Frame (Extended Sequential). 51 sof2Marker = 0xc2 // Start Of Frame (Progressive). 52 dhtMarker = 0xc4 // Define Huffman Table. 53 rst0Marker = 0xd0 // ReSTart (0). 54 rst7Marker = 0xd7 // ReSTart (7). 55 soiMarker = 0xd8 // Start Of Image. 56 eoiMarker = 0xd9 // End Of Image. 57 sosMarker = 0xda // Start Of Scan. 58 dqtMarker = 0xdb // Define Quantization Table. 59 driMarker = 0xdd // Define Restart Interval. 60 comMarker = 0xfe // COMment. 61 // "APPlication specific" markers aren't part of the JPEG spec per se, 62 // but in practice, their use is described at 63 // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html 64 app0Marker = 0xe0 65 app14Marker = 0xee 66 app15Marker = 0xef 67 ) 68 69 // See https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 70 const ( 71 adobeTransformUnknown = 0 72 adobeTransformYCbCr = 1 73 adobeTransformYCbCrK = 2 74 ) 75 76 // unzig maps from the zig-zag ordering to the natural ordering. For example, 77 // unzig[3] is the column and row of the fourth element in zig-zag order. The 78 // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2). 79 var unzig = [blockSize]int{ 80 0, 1, 8, 16, 9, 2, 3, 10, 81 17, 24, 32, 25, 18, 11, 4, 5, 82 12, 19, 26, 33, 40, 48, 41, 34, 83 27, 20, 13, 6, 7, 14, 21, 28, 84 35, 42, 49, 56, 57, 50, 43, 36, 85 29, 22, 15, 23, 30, 37, 44, 51, 86 58, 59, 52, 45, 38, 31, 39, 46, 87 53, 60, 61, 54, 47, 55, 62, 63, 88 } 89 90 // Deprecated: Reader is not used by the image/jpeg package and should 91 // not be used by others. It is kept for compatibility. 92 type Reader interface { 93 io.ByteReader 94 io.Reader 95 } 96 97 // bits holds the unprocessed bits that have been taken from the byte-stream. 98 // The n least significant bits of a form the unread bits, to be read in MSB to 99 // LSB order. 100 type bits struct { 101 a uint32 // accumulator. 102 m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0. 103 n int32 // the number of unread bits in a. 104 } 105 106 type decoder struct { 107 r io.Reader 108 bits bits 109 // bytes is a byte buffer, similar to a bufio.Reader, except that it 110 // has to be able to unread more than 1 byte, due to byte stuffing. 111 // Byte stuffing is specified in section F.1.2.3. 112 bytes struct { 113 // buf[i:j] are the buffered bytes read from the underlying 114 // io.Reader that haven't yet been passed further on. 115 buf [4096]byte 116 i, j int 117 // nUnreadable is the number of bytes to back up i after 118 // overshooting. It can be 0, 1 or 2. 119 nUnreadable int 120 } 121 width, height int 122 123 img1 *image.Gray 124 img3 *image.YCbCr 125 blackPix []byte 126 blackStride int 127 128 ri int // Restart Interval. 129 nComp int 130 131 // As per section 4.5, there are four modes of operation (selected by the 132 // SOF? markers): sequential DCT, progressive DCT, lossless and 133 // hierarchical, although this implementation does not support the latter 134 // two non-DCT modes. Sequential DCT is further split into baseline and 135 // extended, as per section 4.11. 136 baseline bool 137 progressive bool 138 139 jfif bool 140 adobeTransformValid bool 141 adobeTransform uint8 142 eobRun uint16 // End-of-Band run, specified in section G.1.2.2. 143 144 comp [maxComponents]component 145 progCoeffs [maxComponents][]block // Saved state between progressive-mode scans. 146 huff [maxTc + 1][maxTh + 1]huffman 147 quant [maxTq + 1]block // Quantization tables, in zig-zag order. 148 tmp [2 * blockSize]byte 149 } 150 151 // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It 152 // should only be called when there are no unread bytes in d.bytes. 153 func (d *decoder) fill() error { 154 if d.bytes.i != d.bytes.j { 155 panic("jpeg: fill called when unread bytes exist") 156 } 157 // Move the last 2 bytes to the start of the buffer, in case we need 158 // to call unreadByteStuffedByte. 159 if d.bytes.j > 2 { 160 d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2] 161 d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1] 162 d.bytes.i, d.bytes.j = 2, 2 163 } 164 // Fill in the rest of the buffer. 165 n, err := d.r.Read(d.bytes.buf[d.bytes.j:]) 166 d.bytes.j += n 167 if n > 0 { 168 err = nil 169 } 170 return err 171 } 172 173 // unreadByteStuffedByte undoes the most recent readByteStuffedByte call, 174 // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table 175 // requires at least 8 bits for look-up, which means that Huffman decoding can 176 // sometimes overshoot and read one or two too many bytes. Two-byte overshoot 177 // can happen when expecting to read a 0xff 0x00 byte-stuffed byte. 178 func (d *decoder) unreadByteStuffedByte() { 179 d.bytes.i -= d.bytes.nUnreadable 180 d.bytes.nUnreadable = 0 181 if d.bits.n >= 8 { 182 d.bits.a >>= 8 183 d.bits.n -= 8 184 d.bits.m >>= 8 185 } 186 } 187 188 // readByte returns the next byte, whether buffered or not buffered. It does 189 // not care about byte stuffing. 190 func (d *decoder) readByte() (x byte, err error) { 191 for d.bytes.i == d.bytes.j { 192 if err = d.fill(); err != nil { 193 return 0, err 194 } 195 } 196 x = d.bytes.buf[d.bytes.i] 197 d.bytes.i++ 198 d.bytes.nUnreadable = 0 199 return x, nil 200 } 201 202 // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a 203 // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00. 204 var errMissingFF00 = FormatError("missing 0xff00 sequence") 205 206 // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data. 207 func (d *decoder) readByteStuffedByte() (x byte, err error) { 208 // Take the fast path if d.bytes.buf contains at least two bytes. 209 if d.bytes.i+2 <= d.bytes.j { 210 x = d.bytes.buf[d.bytes.i] 211 d.bytes.i++ 212 d.bytes.nUnreadable = 1 213 if x != 0xff { 214 return x, err 215 } 216 if d.bytes.buf[d.bytes.i] != 0x00 { 217 return 0, errMissingFF00 218 } 219 d.bytes.i++ 220 d.bytes.nUnreadable = 2 221 return 0xff, nil 222 } 223 224 d.bytes.nUnreadable = 0 225 226 x, err = d.readByte() 227 if err != nil { 228 return 0, err 229 } 230 d.bytes.nUnreadable = 1 231 if x != 0xff { 232 return x, nil 233 } 234 235 x, err = d.readByte() 236 if err != nil { 237 return 0, err 238 } 239 d.bytes.nUnreadable = 2 240 if x != 0x00 { 241 return 0, errMissingFF00 242 } 243 return 0xff, nil 244 } 245 246 // readFull reads exactly len(p) bytes into p. It does not care about byte 247 // stuffing. 248 func (d *decoder) readFull(p []byte) error { 249 // Unread the overshot bytes, if any. 250 if d.bytes.nUnreadable != 0 { 251 if d.bits.n >= 8 { 252 d.unreadByteStuffedByte() 253 } 254 d.bytes.nUnreadable = 0 255 } 256 257 for { 258 n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j]) 259 p = p[n:] 260 d.bytes.i += n 261 if len(p) == 0 { 262 break 263 } 264 if err := d.fill(); err != nil { 265 if err == io.EOF { 266 err = io.ErrUnexpectedEOF 267 } 268 return err 269 } 270 } 271 return nil 272 } 273 274 // ignore ignores the next n bytes. 275 func (d *decoder) ignore(n int) error { 276 // Unread the overshot bytes, if any. 277 if d.bytes.nUnreadable != 0 { 278 if d.bits.n >= 8 { 279 d.unreadByteStuffedByte() 280 } 281 d.bytes.nUnreadable = 0 282 } 283 284 for { 285 m := d.bytes.j - d.bytes.i 286 if m > n { 287 m = n 288 } 289 d.bytes.i += m 290 n -= m 291 if n == 0 { 292 break 293 } 294 if err := d.fill(); err != nil { 295 if err == io.EOF { 296 err = io.ErrUnexpectedEOF 297 } 298 return err 299 } 300 } 301 return nil 302 } 303 304 // Specified in section B.2.2. 305 func (d *decoder) processSOF(n int) error { 306 if d.nComp != 0 { 307 return FormatError("multiple SOF markers") 308 } 309 switch n { 310 case 6 + 3*1: // Grayscale image. 311 d.nComp = 1 312 case 6 + 3*3: // YCbCr or RGB image. 313 d.nComp = 3 314 case 6 + 3*4: // YCbCrK or CMYK image. 315 d.nComp = 4 316 default: 317 return UnsupportedError("number of components") 318 } 319 if err := d.readFull(d.tmp[:n]); err != nil { 320 return err 321 } 322 // We only support 8-bit precision. 323 if d.tmp[0] != 8 { 324 return UnsupportedError("precision") 325 } 326 d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) 327 d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) 328 if int(d.tmp[5]) != d.nComp { 329 return FormatError("SOF has wrong length") 330 } 331 332 for i := 0; i < d.nComp; i++ { 333 d.comp[i].c = d.tmp[6+3*i] 334 // Section B.2.2 states that "the value of C_i shall be different from 335 // the values of C_1 through C_(i-1)". 336 for j := 0; j < i; j++ { 337 if d.comp[i].c == d.comp[j].c { 338 return FormatError("repeated component identifier") 339 } 340 } 341 342 d.comp[i].tq = d.tmp[8+3*i] 343 if d.comp[i].tq > maxTq { 344 return FormatError("bad Tq value") 345 } 346 347 hv := d.tmp[7+3*i] 348 h, v := int(hv>>4), int(hv&0x0f) 349 if h < 1 || 4 < h || v < 1 || 4 < v { 350 return FormatError("luma/chroma subsampling ratio") 351 } 352 if h == 3 || v == 3 { 353 return errUnsupportedSubsamplingRatio 354 } 355 switch d.nComp { 356 case 1: 357 // If a JPEG image has only one component, section A.2 says "this data 358 // is non-interleaved by definition" and section A.2.2 says "[in this 359 // case...] the order of data units within a scan shall be left-to-right 360 // and top-to-bottom... regardless of the values of H_1 and V_1". Section 361 // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be 362 // one data unit". Similarly, section A.1.1 explains that it is the ratio 363 // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale 364 // images, H_1 is the maximum H_j for all components j, so that ratio is 365 // always 1. The component's (h, v) is effectively always (1, 1): even if 366 // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8 367 // MCUs, not two 16x8 MCUs. 368 h, v = 1, 1 369 370 case 3: 371 // For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0, 372 // 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the 373 // (h, v) values for the Y component are either (1, 1), (1, 2), 374 // (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values 375 // must be a multiple of the Cb and Cr component's values. We also 376 // assume that the two chroma components have the same subsampling 377 // ratio. 378 switch i { 379 case 0: // Y. 380 // We have already verified, above, that h and v are both 381 // either 1, 2 or 4, so invalid (h, v) combinations are those 382 // with v == 4. 383 if v == 4 { 384 return errUnsupportedSubsamplingRatio 385 } 386 case 1: // Cb. 387 if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 { 388 return errUnsupportedSubsamplingRatio 389 } 390 case 2: // Cr. 391 if d.comp[1].h != h || d.comp[1].v != v { 392 return errUnsupportedSubsamplingRatio 393 } 394 } 395 396 case 4: 397 // For 4-component images (either CMYK or YCbCrK), we only support two 398 // hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22]. 399 // Theoretically, 4-component JPEG images could mix and match hv values 400 // but in practice, those two combinations are the only ones in use, 401 // and it simplifies the applyBlack code below if we can assume that: 402 // - for CMYK, the C and K channels have full samples, and if the M 403 // and Y channels subsample, they subsample both horizontally and 404 // vertically. 405 // - for YCbCrK, the Y and K channels have full samples. 406 switch i { 407 case 0: 408 if hv != 0x11 && hv != 0x22 { 409 return errUnsupportedSubsamplingRatio 410 } 411 case 1, 2: 412 if hv != 0x11 { 413 return errUnsupportedSubsamplingRatio 414 } 415 case 3: 416 if d.comp[0].h != h || d.comp[0].v != v { 417 return errUnsupportedSubsamplingRatio 418 } 419 } 420 } 421 422 d.comp[i].h = h 423 d.comp[i].v = v 424 } 425 return nil 426 } 427 428 // Specified in section B.2.4.1. 429 func (d *decoder) processDQT(n int) error { 430 loop: 431 for n > 0 { 432 n-- 433 x, err := d.readByte() 434 if err != nil { 435 return err 436 } 437 tq := x & 0x0f 438 if tq > maxTq { 439 return FormatError("bad Tq value") 440 } 441 switch x >> 4 { 442 default: 443 return FormatError("bad Pq value") 444 case 0: 445 if n < blockSize { 446 break loop 447 } 448 n -= blockSize 449 if err := d.readFull(d.tmp[:blockSize]); err != nil { 450 return err 451 } 452 for i := range d.quant[tq] { 453 d.quant[tq][i] = int32(d.tmp[i]) 454 } 455 case 1: 456 if n < 2*blockSize { 457 break loop 458 } 459 n -= 2 * blockSize 460 if err := d.readFull(d.tmp[:2*blockSize]); err != nil { 461 return err 462 } 463 for i := range d.quant[tq] { 464 d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1]) 465 } 466 } 467 } 468 if n != 0 { 469 return FormatError("DQT has wrong length") 470 } 471 return nil 472 } 473 474 // Specified in section B.2.4.4. 475 func (d *decoder) processDRI(n int) error { 476 if n != 2 { 477 return FormatError("DRI has wrong length") 478 } 479 if err := d.readFull(d.tmp[:2]); err != nil { 480 return err 481 } 482 d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) 483 return nil 484 } 485 486 func (d *decoder) processApp0Marker(n int) error { 487 if n < 5 { 488 return d.ignore(n) 489 } 490 if err := d.readFull(d.tmp[:5]); err != nil { 491 return err 492 } 493 n -= 5 494 495 d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00' 496 497 if n > 0 { 498 return d.ignore(n) 499 } 500 return nil 501 } 502 503 func (d *decoder) processApp14Marker(n int) error { 504 if n < 12 { 505 return d.ignore(n) 506 } 507 if err := d.readFull(d.tmp[:12]); err != nil { 508 return err 509 } 510 n -= 12 511 512 if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' { 513 d.adobeTransformValid = true 514 d.adobeTransform = d.tmp[11] 515 } 516 517 if n > 0 { 518 return d.ignore(n) 519 } 520 return nil 521 } 522 523 // decode reads a JPEG image from r and returns it as an image.Image. 524 func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { 525 d.r = r 526 527 // Check for the Start Of Image marker. 528 if err := d.readFull(d.tmp[:2]); err != nil { 529 return nil, err 530 } 531 if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { 532 return nil, FormatError("missing SOI marker") 533 } 534 535 // Process the remaining segments until the End Of Image marker. 536 for { 537 err := d.readFull(d.tmp[:2]) 538 if err != nil { 539 return nil, err 540 } 541 for d.tmp[0] != 0xff { 542 // Strictly speaking, this is a format error. However, libjpeg is 543 // liberal in what it accepts. As of version 9, next_marker in 544 // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and 545 // continues to decode the stream. Even before next_marker sees 546 // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many 547 // bytes as it can, possibly past the end of a scan's data. It 548 // effectively puts back any markers that it overscanned (e.g. an 549 // "\xff\xd9" EOI marker), but it does not put back non-marker data, 550 // and thus it can silently ignore a small number of extraneous 551 // non-marker bytes before next_marker has a chance to see them (and 552 // print a warning). 553 // 554 // We are therefore also liberal in what we accept. Extraneous data 555 // is silently ignored. 556 // 557 // This is similar to, but not exactly the same as, the restart 558 // mechanism within a scan (the RST[0-7] markers). 559 // 560 // Note that extraneous 0xff bytes in e.g. SOS data are escaped as 561 // "\xff\x00", and so are detected a little further down below. 562 d.tmp[0] = d.tmp[1] 563 d.tmp[1], err = d.readByte() 564 if err != nil { 565 return nil, err 566 } 567 } 568 marker := d.tmp[1] 569 if marker == 0 { 570 // Treat "\xff\x00" as extraneous data. 571 continue 572 } 573 for marker == 0xff { 574 // Section B.1.1.2 says, "Any marker may optionally be preceded by any 575 // number of fill bytes, which are bytes assigned code X'FF'". 576 marker, err = d.readByte() 577 if err != nil { 578 return nil, err 579 } 580 } 581 if marker == eoiMarker { // End Of Image. 582 break 583 } 584 if rst0Marker <= marker && marker <= rst7Marker { 585 // Figures B.2 and B.16 of the specification suggest that restart markers should 586 // only occur between Entropy Coded Segments and not after the final ECS. 587 // However, some encoders may generate incorrect JPEGs with a final restart 588 // marker. That restart marker will be seen here instead of inside the processSOS 589 // method, and is ignored as a harmless error. Restart markers have no extra data, 590 // so we check for this before we read the 16-bit length of the segment. 591 continue 592 } 593 594 // Read the 16-bit length of the segment. The value includes the 2 bytes for the 595 // length itself, so we subtract 2 to get the number of remaining bytes. 596 if err = d.readFull(d.tmp[:2]); err != nil { 597 return nil, err 598 } 599 n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 600 if n < 0 { 601 return nil, FormatError("short segment length") 602 } 603 604 switch marker { 605 case sof0Marker, sof1Marker, sof2Marker: 606 d.baseline = marker == sof0Marker 607 d.progressive = marker == sof2Marker 608 err = d.processSOF(n) 609 if configOnly && d.jfif { 610 return nil, err 611 } 612 case dhtMarker: 613 if configOnly { 614 err = d.ignore(n) 615 } else { 616 err = d.processDHT(n) 617 } 618 case dqtMarker: 619 if configOnly { 620 err = d.ignore(n) 621 } else { 622 err = d.processDQT(n) 623 } 624 case sosMarker: 625 if configOnly { 626 return nil, nil 627 } 628 err = d.processSOS(n) 629 case driMarker: 630 if configOnly { 631 err = d.ignore(n) 632 } else { 633 err = d.processDRI(n) 634 } 635 case app0Marker: 636 err = d.processApp0Marker(n) 637 case app14Marker: 638 err = d.processApp14Marker(n) 639 default: 640 if app0Marker <= marker && marker <= app15Marker || marker == comMarker { 641 err = d.ignore(n) 642 } else if marker < 0xc0 { // See Table B.1 "Marker code assignments". 643 err = FormatError("unknown marker") 644 } else { 645 err = UnsupportedError("unknown marker") 646 } 647 } 648 if err != nil { 649 return nil, err 650 } 651 } 652 653 if d.progressive { 654 if err := d.reconstructProgressiveImage(); err != nil { 655 return nil, err 656 } 657 } 658 if d.img1 != nil { 659 return d.img1, nil 660 } 661 if d.img3 != nil { 662 if d.blackPix != nil { 663 return d.applyBlack() 664 } else if d.isRGB() { 665 return d.convertToRGB() 666 } 667 return d.img3, nil 668 } 669 return nil, FormatError("missing SOS marker") 670 } 671 672 // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula 673 // used depends on whether the JPEG image is stored as CMYK or YCbCrK, 674 // indicated by the APP14 (Adobe) metadata. 675 // 676 // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full 677 // ink, so we apply "v = 255 - v" at various points. Note that a double 678 // inversion is a no-op, so inversions might be implicit in the code below. 679 func (d *decoder) applyBlack() (image.Image, error) { 680 if !d.adobeTransformValid { 681 return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata") 682 } 683 684 // If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB 685 // or CMYK)" as per 686 // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 687 // we assume that it is YCbCrK. This matches libjpeg's jdapimin.c. 688 if d.adobeTransform != adobeTransformUnknown { 689 // Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get 690 // CMY, and patch in the original K. The RGB to CMY inversion cancels 691 // out the 'Adobe inversion' described in the applyBlack doc comment 692 // above, so in practice, only the fourth channel (black) is inverted. 693 bounds := d.img3.Bounds() 694 img := image.NewRGBA(bounds) 695 imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min) 696 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 697 for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 698 img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)] 699 } 700 } 701 return &image.CMYK{ 702 Pix: img.Pix, 703 Stride: img.Stride, 704 Rect: img.Rect, 705 }, nil 706 } 707 708 // The first three channels (cyan, magenta, yellow) of the CMYK 709 // were decoded into d.img3, but each channel was decoded into a separate 710 // []byte slice, and some channels may be subsampled. We interleave the 711 // separate channels into an image.CMYK's single []byte slice containing 4 712 // contiguous bytes per pixel. 713 bounds := d.img3.Bounds() 714 img := image.NewCMYK(bounds) 715 716 translations := [4]struct { 717 src []byte 718 stride int 719 }{ 720 {d.img3.Y, d.img3.YStride}, 721 {d.img3.Cb, d.img3.CStride}, 722 {d.img3.Cr, d.img3.CStride}, 723 {d.blackPix, d.blackStride}, 724 } 725 for t, translation := range translations { 726 subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v 727 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 728 sy := y - bounds.Min.Y 729 if subsample { 730 sy /= 2 731 } 732 for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 733 sx := x - bounds.Min.X 734 if subsample { 735 sx /= 2 736 } 737 img.Pix[i] = 255 - translation.src[sy*translation.stride+sx] 738 } 739 } 740 } 741 return img, nil 742 } 743 744 func (d *decoder) isRGB() bool { 745 if d.jfif { 746 return false 747 } 748 if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown { 749 // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 750 // says that 0 means Unknown (and in practice RGB) and 1 means YCbCr. 751 return true 752 } 753 return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B' 754 } 755 756 func (d *decoder) convertToRGB() (image.Image, error) { 757 cScale := d.comp[0].h / d.comp[1].h 758 bounds := d.img3.Bounds() 759 img := image.NewRGBA(bounds) 760 for y := bounds.Min.Y; y < bounds.Max.Y; y++ { 761 po := img.PixOffset(bounds.Min.X, y) 762 yo := d.img3.YOffset(bounds.Min.X, y) 763 co := d.img3.COffset(bounds.Min.X, y) 764 for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ { 765 img.Pix[po+4*i+0] = d.img3.Y[yo+i] 766 img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale] 767 img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale] 768 img.Pix[po+4*i+3] = 255 769 } 770 } 771 return img, nil 772 } 773 774 // Decode reads a JPEG image from r. Different from the standard package, the 775 // decoded result will be received by the callback set by SetCallback(). 776 func Decode(r io.Reader) (image.Image, error) { 777 var d decoder 778 _, err := d.decode(r, false) 779 return nil, err 780 } 781 782 // DecodeConfig returns the color model and dimensions of a JPEG image without 783 // decoding the entire image. 784 func DecodeConfig(r io.Reader) (image.Config, error) { 785 var d decoder 786 if _, err := d.decode(r, true); err != nil { 787 return image.Config{}, err 788 } 789 switch d.nComp { 790 case 1: 791 return image.Config{ 792 ColorModel: color.GrayModel, 793 Width: d.width, 794 Height: d.height, 795 }, nil 796 case 3: 797 cm := color.YCbCrModel 798 if d.isRGB() { 799 cm = color.RGBAModel 800 } 801 return image.Config{ 802 ColorModel: cm, 803 Width: d.width, 804 Height: d.height, 805 }, nil 806 case 4: 807 return image.Config{ 808 ColorModel: color.CMYKModel, 809 Width: d.width, 810 Height: d.height, 811 }, nil 812 } 813 return image.Config{}, FormatError("missing SOF marker") 814 }