tinygo.org/x/drivers@v0.27.1-0.20240509133757-7dbca2a54349/image/png/writer.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package png 6 7 import ( 8 "bufio" 9 "compress/zlib" 10 "encoding/binary" 11 "hash/crc32" 12 "image" 13 "image/color" 14 "io" 15 "strconv" 16 ) 17 18 // Encoder configures encoding PNG images. 19 type Encoder struct { 20 CompressionLevel CompressionLevel 21 22 // BufferPool optionally specifies a buffer pool to get temporary 23 // EncoderBuffers when encoding an image. 24 BufferPool EncoderBufferPool 25 } 26 27 // EncoderBufferPool is an interface for getting and returning temporary 28 // instances of the EncoderBuffer struct. This can be used to reuse buffers 29 // when encoding multiple images. 30 type EncoderBufferPool interface { 31 Get() *EncoderBuffer 32 Put(*EncoderBuffer) 33 } 34 35 // EncoderBuffer holds the buffers used for encoding PNG images. 36 type EncoderBuffer encoder 37 38 type encoder struct { 39 enc *Encoder 40 w io.Writer 41 m image.Image 42 cb int 43 err error 44 header [8]byte 45 footer [4]byte 46 tmp [4 * 256]byte 47 cr [nFilter][]uint8 48 pr []uint8 49 zw *zlib.Writer 50 zwLevel int 51 bw *bufio.Writer 52 } 53 54 // CompressionLevel indicates the compression level. 55 type CompressionLevel int 56 57 const ( 58 DefaultCompression CompressionLevel = 0 59 NoCompression CompressionLevel = -1 60 BestSpeed CompressionLevel = -2 61 BestCompression CompressionLevel = -3 62 63 // Positive CompressionLevel values are reserved to mean a numeric zlib 64 // compression level, although that is not implemented yet. 65 ) 66 67 type opaquer interface { 68 Opaque() bool 69 } 70 71 // Returns whether or not the image is fully opaque. 72 func opaque(m image.Image) bool { 73 if o, ok := m.(opaquer); ok { 74 return o.Opaque() 75 } 76 b := m.Bounds() 77 for y := b.Min.Y; y < b.Max.Y; y++ { 78 for x := b.Min.X; x < b.Max.X; x++ { 79 _, _, _, a := m.At(x, y).RGBA() 80 if a != 0xffff { 81 return false 82 } 83 } 84 } 85 return true 86 } 87 88 // The absolute value of a byte interpreted as a signed int8. 89 func abs8(d uint8) int { 90 if d < 128 { 91 return int(d) 92 } 93 return 256 - int(d) 94 } 95 96 func (e *encoder) writeChunk(b []byte, name string) { 97 if e.err != nil { 98 return 99 } 100 n := uint32(len(b)) 101 if int(n) != len(b) { 102 e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b))) 103 return 104 } 105 binary.BigEndian.PutUint32(e.header[:4], n) 106 e.header[4] = name[0] 107 e.header[5] = name[1] 108 e.header[6] = name[2] 109 e.header[7] = name[3] 110 crc := crc32.NewIEEE() 111 crc.Write(e.header[4:8]) 112 crc.Write(b) 113 binary.BigEndian.PutUint32(e.footer[:4], crc.Sum32()) 114 115 _, e.err = e.w.Write(e.header[:8]) 116 if e.err != nil { 117 return 118 } 119 _, e.err = e.w.Write(b) 120 if e.err != nil { 121 return 122 } 123 _, e.err = e.w.Write(e.footer[:4]) 124 } 125 126 func (e *encoder) writeIHDR() { 127 b := e.m.Bounds() 128 binary.BigEndian.PutUint32(e.tmp[0:4], uint32(b.Dx())) 129 binary.BigEndian.PutUint32(e.tmp[4:8], uint32(b.Dy())) 130 // Set bit depth and color type. 131 switch e.cb { 132 case cbG8: 133 e.tmp[8] = 8 134 e.tmp[9] = ctGrayscale 135 case cbTC8: 136 e.tmp[8] = 8 137 e.tmp[9] = ctTrueColor 138 case cbP8: 139 e.tmp[8] = 8 140 e.tmp[9] = ctPaletted 141 case cbP4: 142 e.tmp[8] = 4 143 e.tmp[9] = ctPaletted 144 case cbP2: 145 e.tmp[8] = 2 146 e.tmp[9] = ctPaletted 147 case cbP1: 148 e.tmp[8] = 1 149 e.tmp[9] = ctPaletted 150 case cbTCA8: 151 e.tmp[8] = 8 152 e.tmp[9] = ctTrueColorAlpha 153 case cbG16: 154 e.tmp[8] = 16 155 e.tmp[9] = ctGrayscale 156 case cbTC16: 157 e.tmp[8] = 16 158 e.tmp[9] = ctTrueColor 159 case cbTCA16: 160 e.tmp[8] = 16 161 e.tmp[9] = ctTrueColorAlpha 162 } 163 e.tmp[10] = 0 // default compression method 164 e.tmp[11] = 0 // default filter method 165 e.tmp[12] = 0 // non-interlaced 166 e.writeChunk(e.tmp[:13], "IHDR") 167 } 168 169 func (e *encoder) writePLTEAndTRNS(p color.Palette) { 170 if len(p) < 1 || len(p) > 256 { 171 e.err = FormatError("bad palette length: " + strconv.Itoa(len(p))) 172 return 173 } 174 last := -1 175 for i, c := range p { 176 c1 := color.NRGBAModel.Convert(c).(color.NRGBA) 177 e.tmp[3*i+0] = c1.R 178 e.tmp[3*i+1] = c1.G 179 e.tmp[3*i+2] = c1.B 180 if c1.A != 0xff { 181 last = i 182 } 183 e.tmp[3*256+i] = c1.A 184 } 185 e.writeChunk(e.tmp[:3*len(p)], "PLTE") 186 if last != -1 { 187 e.writeChunk(e.tmp[3*256:3*256+1+last], "tRNS") 188 } 189 } 190 191 // An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks, 192 // including an 8-byte header and 4-byte CRC checksum per Write call. Such calls 193 // should be relatively infrequent, since writeIDATs uses a bufio.Writer. 194 // 195 // This method should only be called from writeIDATs (via writeImage). 196 // No other code should treat an encoder as an io.Writer. 197 func (e *encoder) Write(b []byte) (int, error) { 198 e.writeChunk(b, "IDAT") 199 if e.err != nil { 200 return 0, e.err 201 } 202 return len(b), nil 203 } 204 205 // Chooses the filter to use for encoding the current row, and applies it. 206 // The return value is the index of the filter and also of the row in cr that has had it applied. 207 func filter(cr *[nFilter][]byte, pr []byte, bpp int) int { 208 // We try all five filter types, and pick the one that minimizes the sum of absolute differences. 209 // This is the same heuristic that libpng uses, although the filters are attempted in order of 210 // estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than 211 // in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth). 212 cdat0 := cr[0][1:] 213 cdat1 := cr[1][1:] 214 cdat2 := cr[2][1:] 215 cdat3 := cr[3][1:] 216 cdat4 := cr[4][1:] 217 pdat := pr[1:] 218 n := len(cdat0) 219 220 // The up filter. 221 sum := 0 222 for i := 0; i < n; i++ { 223 cdat2[i] = cdat0[i] - pdat[i] 224 sum += abs8(cdat2[i]) 225 } 226 best := sum 227 filter := ftUp 228 229 // The Paeth filter. 230 sum = 0 231 for i := 0; i < bpp; i++ { 232 cdat4[i] = cdat0[i] - pdat[i] 233 sum += abs8(cdat4[i]) 234 } 235 for i := bpp; i < n; i++ { 236 cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp]) 237 sum += abs8(cdat4[i]) 238 if sum >= best { 239 break 240 } 241 } 242 if sum < best { 243 best = sum 244 filter = ftPaeth 245 } 246 247 // The none filter. 248 sum = 0 249 for i := 0; i < n; i++ { 250 sum += abs8(cdat0[i]) 251 if sum >= best { 252 break 253 } 254 } 255 if sum < best { 256 best = sum 257 filter = ftNone 258 } 259 260 // The sub filter. 261 sum = 0 262 for i := 0; i < bpp; i++ { 263 cdat1[i] = cdat0[i] 264 sum += abs8(cdat1[i]) 265 } 266 for i := bpp; i < n; i++ { 267 cdat1[i] = cdat0[i] - cdat0[i-bpp] 268 sum += abs8(cdat1[i]) 269 if sum >= best { 270 break 271 } 272 } 273 if sum < best { 274 best = sum 275 filter = ftSub 276 } 277 278 // The average filter. 279 sum = 0 280 for i := 0; i < bpp; i++ { 281 cdat3[i] = cdat0[i] - pdat[i]/2 282 sum += abs8(cdat3[i]) 283 } 284 for i := bpp; i < n; i++ { 285 cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2) 286 sum += abs8(cdat3[i]) 287 if sum >= best { 288 break 289 } 290 } 291 if sum < best { 292 filter = ftAverage 293 } 294 295 return filter 296 } 297 298 func zeroMemory(v []uint8) { 299 for i := range v { 300 v[i] = 0 301 } 302 } 303 304 func (e *encoder) writeImage(w io.Writer, m image.Image, cb int, level int) error { 305 if e.zw == nil || e.zwLevel != level { 306 zw, err := zlib.NewWriterLevel(w, level) 307 if err != nil { 308 return err 309 } 310 e.zw = zw 311 e.zwLevel = level 312 } else { 313 e.zw.Reset(w) 314 } 315 defer e.zw.Close() 316 317 bitsPerPixel := 0 318 319 switch cb { 320 case cbG8: 321 bitsPerPixel = 8 322 case cbTC8: 323 bitsPerPixel = 24 324 case cbP8: 325 bitsPerPixel = 8 326 case cbP4: 327 bitsPerPixel = 4 328 case cbP2: 329 bitsPerPixel = 2 330 case cbP1: 331 bitsPerPixel = 1 332 case cbTCA8: 333 bitsPerPixel = 32 334 case cbTC16: 335 bitsPerPixel = 48 336 case cbTCA16: 337 bitsPerPixel = 64 338 case cbG16: 339 bitsPerPixel = 16 340 } 341 342 // cr[*] and pr are the bytes for the current and previous row. 343 // cr[0] is unfiltered (or equivalently, filtered with the ftNone filter). 344 // cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the 345 // other PNG filter types. These buffers are allocated once and re-used for each row. 346 // The +1 is for the per-row filter type, which is at cr[*][0]. 347 b := m.Bounds() 348 sz := 1 + (bitsPerPixel*b.Dx()+7)/8 349 for i := range e.cr { 350 if cap(e.cr[i]) < sz { 351 e.cr[i] = make([]uint8, sz) 352 } else { 353 e.cr[i] = e.cr[i][:sz] 354 } 355 e.cr[i][0] = uint8(i) 356 } 357 cr := e.cr 358 if cap(e.pr) < sz { 359 e.pr = make([]uint8, sz) 360 } else { 361 e.pr = e.pr[:sz] 362 zeroMemory(e.pr) 363 } 364 pr := e.pr 365 366 gray, _ := m.(*image.Gray) 367 rgba, _ := m.(*image.RGBA) 368 paletted, _ := m.(*image.Paletted) 369 nrgba, _ := m.(*image.NRGBA) 370 371 for y := b.Min.Y; y < b.Max.Y; y++ { 372 // Convert from colors to bytes. 373 i := 1 374 switch cb { 375 case cbG8: 376 if gray != nil { 377 offset := (y - b.Min.Y) * gray.Stride 378 copy(cr[0][1:], gray.Pix[offset:offset+b.Dx()]) 379 } else { 380 for x := b.Min.X; x < b.Max.X; x++ { 381 c := color.GrayModel.Convert(m.At(x, y)).(color.Gray) 382 cr[0][i] = c.Y 383 i++ 384 } 385 } 386 case cbTC8: 387 // We have previously verified that the alpha value is fully opaque. 388 cr0 := cr[0] 389 stride, pix := 0, []byte(nil) 390 if rgba != nil { 391 stride, pix = rgba.Stride, rgba.Pix 392 } else if nrgba != nil { 393 stride, pix = nrgba.Stride, nrgba.Pix 394 } 395 if stride != 0 { 396 j0 := (y - b.Min.Y) * stride 397 j1 := j0 + b.Dx()*4 398 for j := j0; j < j1; j += 4 { 399 cr0[i+0] = pix[j+0] 400 cr0[i+1] = pix[j+1] 401 cr0[i+2] = pix[j+2] 402 i += 3 403 } 404 } else { 405 for x := b.Min.X; x < b.Max.X; x++ { 406 r, g, b, _ := m.At(x, y).RGBA() 407 cr0[i+0] = uint8(r >> 8) 408 cr0[i+1] = uint8(g >> 8) 409 cr0[i+2] = uint8(b >> 8) 410 i += 3 411 } 412 } 413 case cbP8: 414 if paletted != nil { 415 offset := (y - b.Min.Y) * paletted.Stride 416 copy(cr[0][1:], paletted.Pix[offset:offset+b.Dx()]) 417 } else { 418 pi := m.(image.PalettedImage) 419 for x := b.Min.X; x < b.Max.X; x++ { 420 cr[0][i] = pi.ColorIndexAt(x, y) 421 i += 1 422 } 423 } 424 425 case cbP4, cbP2, cbP1: 426 pi := m.(image.PalettedImage) 427 428 var a uint8 429 var c int 430 pixelsPerByte := 8 / bitsPerPixel 431 for x := b.Min.X; x < b.Max.X; x++ { 432 a = a<<uint(bitsPerPixel) | pi.ColorIndexAt(x, y) 433 c++ 434 if c == pixelsPerByte { 435 cr[0][i] = a 436 i += 1 437 a = 0 438 c = 0 439 } 440 } 441 if c != 0 { 442 for c != pixelsPerByte { 443 a = a << uint(bitsPerPixel) 444 c++ 445 } 446 cr[0][i] = a 447 } 448 449 case cbTCA8: 450 if nrgba != nil { 451 offset := (y - b.Min.Y) * nrgba.Stride 452 copy(cr[0][1:], nrgba.Pix[offset:offset+b.Dx()*4]) 453 } else { 454 // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. 455 for x := b.Min.X; x < b.Max.X; x++ { 456 c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA) 457 cr[0][i+0] = c.R 458 cr[0][i+1] = c.G 459 cr[0][i+2] = c.B 460 cr[0][i+3] = c.A 461 i += 4 462 } 463 } 464 case cbG16: 465 for x := b.Min.X; x < b.Max.X; x++ { 466 c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16) 467 cr[0][i+0] = uint8(c.Y >> 8) 468 cr[0][i+1] = uint8(c.Y) 469 i += 2 470 } 471 case cbTC16: 472 // We have previously verified that the alpha value is fully opaque. 473 for x := b.Min.X; x < b.Max.X; x++ { 474 r, g, b, _ := m.At(x, y).RGBA() 475 cr[0][i+0] = uint8(r >> 8) 476 cr[0][i+1] = uint8(r) 477 cr[0][i+2] = uint8(g >> 8) 478 cr[0][i+3] = uint8(g) 479 cr[0][i+4] = uint8(b >> 8) 480 cr[0][i+5] = uint8(b) 481 i += 6 482 } 483 case cbTCA16: 484 // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. 485 for x := b.Min.X; x < b.Max.X; x++ { 486 c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64) 487 cr[0][i+0] = uint8(c.R >> 8) 488 cr[0][i+1] = uint8(c.R) 489 cr[0][i+2] = uint8(c.G >> 8) 490 cr[0][i+3] = uint8(c.G) 491 cr[0][i+4] = uint8(c.B >> 8) 492 cr[0][i+5] = uint8(c.B) 493 cr[0][i+6] = uint8(c.A >> 8) 494 cr[0][i+7] = uint8(c.A) 495 i += 8 496 } 497 } 498 499 // Apply the filter. 500 // Skip filter for NoCompression and paletted images (cbP8) as 501 // "filters are rarely useful on palette images" and will result 502 // in larger files (see http://www.libpng.org/pub/png/book/chapter09.html). 503 f := ftNone 504 if level != zlib.NoCompression && cb != cbP8 && cb != cbP4 && cb != cbP2 && cb != cbP1 { 505 // Since we skip paletted images we don't have to worry about 506 // bitsPerPixel not being a multiple of 8 507 bpp := bitsPerPixel / 8 508 f = filter(&cr, pr, bpp) 509 } 510 511 // Write the compressed bytes. 512 if _, err := e.zw.Write(cr[f]); err != nil { 513 return err 514 } 515 516 // The current row for y is the previous row for y+1. 517 pr, cr[0] = cr[0], pr 518 } 519 return nil 520 } 521 522 // Write the actual image data to one or more IDAT chunks. 523 func (e *encoder) writeIDATs() { 524 if e.err != nil { 525 return 526 } 527 if e.bw == nil { 528 e.bw = bufio.NewWriterSize(e, 1<<15) 529 } else { 530 e.bw.Reset(e) 531 } 532 e.err = e.writeImage(e.bw, e.m, e.cb, levelToZlib(e.enc.CompressionLevel)) 533 if e.err != nil { 534 return 535 } 536 e.err = e.bw.Flush() 537 } 538 539 // This function is required because we want the zero value of 540 // Encoder.CompressionLevel to map to zlib.DefaultCompression. 541 func levelToZlib(l CompressionLevel) int { 542 switch l { 543 case DefaultCompression: 544 return zlib.DefaultCompression 545 case NoCompression: 546 return zlib.NoCompression 547 case BestSpeed: 548 return zlib.BestSpeed 549 case BestCompression: 550 return zlib.BestCompression 551 default: 552 return zlib.DefaultCompression 553 } 554 } 555 556 func (e *encoder) writeIEND() { e.writeChunk(nil, "IEND") } 557 558 // Encode writes the Image m to w in PNG format. Any Image may be 559 // encoded, but images that are not image.NRGBA might be encoded lossily. 560 func Encode(w io.Writer, m image.Image) error { 561 var e Encoder 562 return e.Encode(w, m) 563 } 564 565 // Encode writes the Image m to w in PNG format. 566 func (enc *Encoder) Encode(w io.Writer, m image.Image) error { 567 // Obviously, negative widths and heights are invalid. Furthermore, the PNG 568 // spec section 11.2.2 says that zero is invalid. Excessively large images are 569 // also rejected. 570 mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy()) 571 if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 { 572 return FormatError("invalid image size: " + strconv.FormatInt(mw, 10) + "x" + strconv.FormatInt(mh, 10)) 573 } 574 575 var e *encoder 576 if enc.BufferPool != nil { 577 buffer := enc.BufferPool.Get() 578 e = (*encoder)(buffer) 579 580 } 581 if e == nil { 582 e = &encoder{} 583 } 584 if enc.BufferPool != nil { 585 defer enc.BufferPool.Put((*EncoderBuffer)(e)) 586 } 587 588 e.enc = enc 589 e.w = w 590 e.m = m 591 592 var pal color.Palette 593 // cbP8 encoding needs PalettedImage's ColorIndexAt method. 594 if _, ok := m.(image.PalettedImage); ok { 595 pal, _ = m.ColorModel().(color.Palette) 596 } 597 if pal != nil { 598 if len(pal) <= 2 { 599 e.cb = cbP1 600 } else if len(pal) <= 4 { 601 e.cb = cbP2 602 } else if len(pal) <= 16 { 603 e.cb = cbP4 604 } else { 605 e.cb = cbP8 606 } 607 } else { 608 switch m.ColorModel() { 609 case color.GrayModel: 610 e.cb = cbG8 611 case color.Gray16Model: 612 e.cb = cbG16 613 case color.RGBAModel, color.NRGBAModel, color.AlphaModel: 614 if opaque(m) { 615 e.cb = cbTC8 616 } else { 617 e.cb = cbTCA8 618 } 619 default: 620 if opaque(m) { 621 e.cb = cbTC16 622 } else { 623 e.cb = cbTCA16 624 } 625 } 626 } 627 628 _, e.err = io.WriteString(w, pngHeader) 629 e.writeIHDR() 630 if pal != nil { 631 e.writePLTEAndTRNS(pal) 632 } 633 e.writeIDATs() 634 e.writeIEND() 635 return e.err 636 }