zombiezen.com/go/lua@v0.0.0-20231013005828-290725fb9140/internal/lua54/lopcodes.h (about)

     1  /*
     2  ** $Id: lopcodes.h $
     3  ** Opcodes for Lua virtual machine
     4  ** See Copyright Notice in lua.h
     5  */
     6  
     7  #ifndef lopcodes_h
     8  #define lopcodes_h
     9  
    10  #include "llimits.h"
    11  
    12  
    13  /*===========================================================================
    14    We assume that instructions are unsigned 32-bit integers.
    15    All instructions have an opcode in the first 7 bits.
    16    Instructions can have the following formats:
    17  
    18          3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
    19          1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
    20  iABC          C(8)     |      B(8)     |k|     A(8)      |   Op(7)     |
    21  iABx                Bx(17)               |     A(8)      |   Op(7)     |
    22  iAsBx              sBx (signed)(17)      |     A(8)      |   Op(7)     |
    23  iAx                           Ax(25)                     |   Op(7)     |
    24  isJ                           sJ (signed)(25)            |   Op(7)     |
    25  
    26    A signed argument is represented in excess K: the represented value is
    27    the written unsigned value minus K, where K is half the maximum for the
    28    corresponding unsigned argument.
    29  ===========================================================================*/
    30  
    31  
    32  enum OpMode {iABC, iABx, iAsBx, iAx, isJ};  /* basic instruction formats */
    33  
    34  
    35  /*
    36  ** size and position of opcode arguments.
    37  */
    38  #define SIZE_C		8
    39  #define SIZE_B		8
    40  #define SIZE_Bx		(SIZE_C + SIZE_B + 1)
    41  #define SIZE_A		8
    42  #define SIZE_Ax		(SIZE_Bx + SIZE_A)
    43  #define SIZE_sJ		(SIZE_Bx + SIZE_A)
    44  
    45  #define SIZE_OP		7
    46  
    47  #define POS_OP		0
    48  
    49  #define POS_A		(POS_OP + SIZE_OP)
    50  #define POS_k		(POS_A + SIZE_A)
    51  #define POS_B		(POS_k + 1)
    52  #define POS_C		(POS_B + SIZE_B)
    53  
    54  #define POS_Bx		POS_k
    55  
    56  #define POS_Ax		POS_A
    57  
    58  #define POS_sJ		POS_A
    59  
    60  
    61  /*
    62  ** limits for opcode arguments.
    63  ** we use (signed) 'int' to manipulate most arguments,
    64  ** so they must fit in ints.
    65  */
    66  
    67  /* Check whether type 'int' has at least 'b' bits ('b' < 32) */
    68  #define L_INTHASBITS(b)		((UINT_MAX >> ((b) - 1)) >= 1)
    69  
    70  
    71  #if L_INTHASBITS(SIZE_Bx)
    72  #define MAXARG_Bx	((1<<SIZE_Bx)-1)
    73  #else
    74  #define MAXARG_Bx	MAX_INT
    75  #endif
    76  
    77  #define OFFSET_sBx	(MAXARG_Bx>>1)         /* 'sBx' is signed */
    78  
    79  
    80  #if L_INTHASBITS(SIZE_Ax)
    81  #define MAXARG_Ax	((1<<SIZE_Ax)-1)
    82  #else
    83  #define MAXARG_Ax	MAX_INT
    84  #endif
    85  
    86  #if L_INTHASBITS(SIZE_sJ)
    87  #define MAXARG_sJ	((1 << SIZE_sJ) - 1)
    88  #else
    89  #define MAXARG_sJ	MAX_INT
    90  #endif
    91  
    92  #define OFFSET_sJ	(MAXARG_sJ >> 1)
    93  
    94  
    95  #define MAXARG_A	((1<<SIZE_A)-1)
    96  #define MAXARG_B	((1<<SIZE_B)-1)
    97  #define MAXARG_C	((1<<SIZE_C)-1)
    98  #define OFFSET_sC	(MAXARG_C >> 1)
    99  
   100  #define int2sC(i)	((i) + OFFSET_sC)
   101  #define sC2int(i)	((i) - OFFSET_sC)
   102  
   103  
   104  /* creates a mask with 'n' 1 bits at position 'p' */
   105  #define MASK1(n,p)	((~((~(Instruction)0)<<(n)))<<(p))
   106  
   107  /* creates a mask with 'n' 0 bits at position 'p' */
   108  #define MASK0(n,p)	(~MASK1(n,p))
   109  
   110  /*
   111  ** the following macros help to manipulate instructions
   112  */
   113  
   114  #define GET_OPCODE(i)	(cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
   115  #define SET_OPCODE(i,o)	((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
   116  		((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
   117  
   118  #define checkopm(i,m)	(getOpMode(GET_OPCODE(i)) == m)
   119  
   120  
   121  #define getarg(i,pos,size)	(cast_int(((i)>>(pos)) & MASK1(size,0)))
   122  #define setarg(i,v,pos,size)	((i) = (((i)&MASK0(size,pos)) | \
   123                  ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
   124  
   125  #define GETARG_A(i)	getarg(i, POS_A, SIZE_A)
   126  #define SETARG_A(i,v)	setarg(i, v, POS_A, SIZE_A)
   127  
   128  #define GETARG_B(i)	check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
   129  #define GETARG_sB(i)	sC2int(GETARG_B(i))
   130  #define SETARG_B(i,v)	setarg(i, v, POS_B, SIZE_B)
   131  
   132  #define GETARG_C(i)	check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
   133  #define GETARG_sC(i)	sC2int(GETARG_C(i))
   134  #define SETARG_C(i,v)	setarg(i, v, POS_C, SIZE_C)
   135  
   136  #define TESTARG_k(i)	check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k)))))
   137  #define GETARG_k(i)	check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
   138  #define SETARG_k(i,v)	setarg(i, v, POS_k, 1)
   139  
   140  #define GETARG_Bx(i)	check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
   141  #define SETARG_Bx(i,v)	setarg(i, v, POS_Bx, SIZE_Bx)
   142  
   143  #define GETARG_Ax(i)	check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
   144  #define SETARG_Ax(i,v)	setarg(i, v, POS_Ax, SIZE_Ax)
   145  
   146  #define GETARG_sBx(i)  \
   147  	check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
   148  #define SETARG_sBx(i,b)	SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
   149  
   150  #define GETARG_sJ(i)  \
   151  	check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
   152  #define SETARG_sJ(i,j) \
   153  	setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
   154  
   155  
   156  #define CREATE_ABCk(o,a,b,c,k)	((cast(Instruction, o)<<POS_OP) \
   157  			| (cast(Instruction, a)<<POS_A) \
   158  			| (cast(Instruction, b)<<POS_B) \
   159  			| (cast(Instruction, c)<<POS_C) \
   160  			| (cast(Instruction, k)<<POS_k))
   161  
   162  #define CREATE_ABx(o,a,bc)	((cast(Instruction, o)<<POS_OP) \
   163  			| (cast(Instruction, a)<<POS_A) \
   164  			| (cast(Instruction, bc)<<POS_Bx))
   165  
   166  #define CREATE_Ax(o,a)		((cast(Instruction, o)<<POS_OP) \
   167  			| (cast(Instruction, a)<<POS_Ax))
   168  
   169  #define CREATE_sJ(o,j,k)	((cast(Instruction, o) << POS_OP) \
   170  			| (cast(Instruction, j) << POS_sJ) \
   171  			| (cast(Instruction, k) << POS_k))
   172  
   173  
   174  #if !defined(MAXINDEXRK)  /* (for debugging only) */
   175  #define MAXINDEXRK	MAXARG_B
   176  #endif
   177  
   178  
   179  /*
   180  ** invalid register that fits in 8 bits
   181  */
   182  #define NO_REG		MAXARG_A
   183  
   184  
   185  /*
   186  ** R[x] - register
   187  ** K[x] - constant (in constant table)
   188  ** RK(x) == if k(i) then K[x] else R[x]
   189  */
   190  
   191  
   192  /*
   193  ** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*)
   194  ** has extra descriptions in the notes after the enumeration.
   195  */
   196  
   197  typedef enum {
   198  /*----------------------------------------------------------------------
   199    name		args	description
   200  ------------------------------------------------------------------------*/
   201  OP_MOVE,/*	A B	R[A] := R[B]					*/
   202  OP_LOADI,/*	A sBx	R[A] := sBx					*/
   203  OP_LOADF,/*	A sBx	R[A] := (lua_Number)sBx				*/
   204  OP_LOADK,/*	A Bx	R[A] := K[Bx]					*/
   205  OP_LOADKX,/*	A	R[A] := K[extra arg]				*/
   206  OP_LOADFALSE,/*	A	R[A] := false					*/
   207  OP_LFALSESKIP,/*A	R[A] := false; pc++	(*)			*/
   208  OP_LOADTRUE,/*	A	R[A] := true					*/
   209  OP_LOADNIL,/*	A B	R[A], R[A+1], ..., R[A+B] := nil		*/
   210  OP_GETUPVAL,/*	A B	R[A] := UpValue[B]				*/
   211  OP_SETUPVAL,/*	A B	UpValue[B] := R[A]				*/
   212  
   213  OP_GETTABUP,/*	A B C	R[A] := UpValue[B][K[C]:string]			*/
   214  OP_GETTABLE,/*	A B C	R[A] := R[B][R[C]]				*/
   215  OP_GETI,/*	A B C	R[A] := R[B][C]					*/
   216  OP_GETFIELD,/*	A B C	R[A] := R[B][K[C]:string]			*/
   217  
   218  OP_SETTABUP,/*	A B C	UpValue[A][K[B]:string] := RK(C)		*/
   219  OP_SETTABLE,/*	A B C	R[A][R[B]] := RK(C)				*/
   220  OP_SETI,/*	A B C	R[A][B] := RK(C)				*/
   221  OP_SETFIELD,/*	A B C	R[A][K[B]:string] := RK(C)			*/
   222  
   223  OP_NEWTABLE,/*	A B C k	R[A] := {}					*/
   224  
   225  OP_SELF,/*	A B C	R[A+1] := R[B]; R[A] := R[B][RK(C):string]	*/
   226  
   227  OP_ADDI,/*	A B sC	R[A] := R[B] + sC				*/
   228  
   229  OP_ADDK,/*	A B C	R[A] := R[B] + K[C]:number			*/
   230  OP_SUBK,/*	A B C	R[A] := R[B] - K[C]:number			*/
   231  OP_MULK,/*	A B C	R[A] := R[B] * K[C]:number			*/
   232  OP_MODK,/*	A B C	R[A] := R[B] % K[C]:number			*/
   233  OP_POWK,/*	A B C	R[A] := R[B] ^ K[C]:number			*/
   234  OP_DIVK,/*	A B C	R[A] := R[B] / K[C]:number			*/
   235  OP_IDIVK,/*	A B C	R[A] := R[B] // K[C]:number			*/
   236  
   237  OP_BANDK,/*	A B C	R[A] := R[B] & K[C]:integer			*/
   238  OP_BORK,/*	A B C	R[A] := R[B] | K[C]:integer			*/
   239  OP_BXORK,/*	A B C	R[A] := R[B] ~ K[C]:integer			*/
   240  
   241  OP_SHRI,/*	A B sC	R[A] := R[B] >> sC				*/
   242  OP_SHLI,/*	A B sC	R[A] := sC << R[B]				*/
   243  
   244  OP_ADD,/*	A B C	R[A] := R[B] + R[C]				*/
   245  OP_SUB,/*	A B C	R[A] := R[B] - R[C]				*/
   246  OP_MUL,/*	A B C	R[A] := R[B] * R[C]				*/
   247  OP_MOD,/*	A B C	R[A] := R[B] % R[C]				*/
   248  OP_POW,/*	A B C	R[A] := R[B] ^ R[C]				*/
   249  OP_DIV,/*	A B C	R[A] := R[B] / R[C]				*/
   250  OP_IDIV,/*	A B C	R[A] := R[B] // R[C]				*/
   251  
   252  OP_BAND,/*	A B C	R[A] := R[B] & R[C]				*/
   253  OP_BOR,/*	A B C	R[A] := R[B] | R[C]				*/
   254  OP_BXOR,/*	A B C	R[A] := R[B] ~ R[C]				*/
   255  OP_SHL,/*	A B C	R[A] := R[B] << R[C]				*/
   256  OP_SHR,/*	A B C	R[A] := R[B] >> R[C]				*/
   257  
   258  OP_MMBIN,/*	A B C	call C metamethod over R[A] and R[B]	(*)	*/
   259  OP_MMBINI,/*	A sB C k	call C metamethod over R[A] and sB	*/
   260  OP_MMBINK,/*	A B C k		call C metamethod over R[A] and K[B]	*/
   261  
   262  OP_UNM,/*	A B	R[A] := -R[B]					*/
   263  OP_BNOT,/*	A B	R[A] := ~R[B]					*/
   264  OP_NOT,/*	A B	R[A] := not R[B]				*/
   265  OP_LEN,/*	A B	R[A] := #R[B] (length operator)			*/
   266  
   267  OP_CONCAT,/*	A B	R[A] := R[A].. ... ..R[A + B - 1]		*/
   268  
   269  OP_CLOSE,/*	A	close all upvalues >= R[A]			*/
   270  OP_TBC,/*	A	mark variable A "to be closed"			*/
   271  OP_JMP,/*	sJ	pc += sJ					*/
   272  OP_EQ,/*	A B k	if ((R[A] == R[B]) ~= k) then pc++		*/
   273  OP_LT,/*	A B k	if ((R[A] <  R[B]) ~= k) then pc++		*/
   274  OP_LE,/*	A B k	if ((R[A] <= R[B]) ~= k) then pc++		*/
   275  
   276  OP_EQK,/*	A B k	if ((R[A] == K[B]) ~= k) then pc++		*/
   277  OP_EQI,/*	A sB k	if ((R[A] == sB) ~= k) then pc++		*/
   278  OP_LTI,/*	A sB k	if ((R[A] < sB) ~= k) then pc++			*/
   279  OP_LEI,/*	A sB k	if ((R[A] <= sB) ~= k) then pc++		*/
   280  OP_GTI,/*	A sB k	if ((R[A] > sB) ~= k) then pc++			*/
   281  OP_GEI,/*	A sB k	if ((R[A] >= sB) ~= k) then pc++		*/
   282  
   283  OP_TEST,/*	A k	if (not R[A] == k) then pc++			*/
   284  OP_TESTSET,/*	A B k	if (not R[B] == k) then pc++ else R[A] := R[B] (*) */
   285  
   286  OP_CALL,/*	A B C	R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */
   287  OP_TAILCALL,/*	A B C k	return R[A](R[A+1], ... ,R[A+B-1])		*/
   288  
   289  OP_RETURN,/*	A B C k	return R[A], ... ,R[A+B-2]	(see note)	*/
   290  OP_RETURN0,/*		return						*/
   291  OP_RETURN1,/*	A	return R[A]					*/
   292  
   293  OP_FORLOOP,/*	A Bx	update counters; if loop continues then pc-=Bx; */
   294  OP_FORPREP,/*	A Bx	<check values and prepare counters>;
   295                          if not to run then pc+=Bx+1;			*/
   296  
   297  OP_TFORPREP,/*	A Bx	create upvalue for R[A + 3]; pc+=Bx		*/
   298  OP_TFORCALL,/*	A C	R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]);	*/
   299  OP_TFORLOOP,/*	A Bx	if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx }	*/
   300  
   301  OP_SETLIST,/*	A B C k	R[A][C+i] := R[A+i], 1 <= i <= B		*/
   302  
   303  OP_CLOSURE,/*	A Bx	R[A] := closure(KPROTO[Bx])			*/
   304  
   305  OP_VARARG,/*	A C	R[A], R[A+1], ..., R[A+C-2] = vararg		*/
   306  
   307  OP_VARARGPREP,/*A	(adjust vararg parameters)			*/
   308  
   309  OP_EXTRAARG/*	Ax	extra (larger) argument for previous opcode	*/
   310  } OpCode;
   311  
   312  
   313  #define NUM_OPCODES	((int)(OP_EXTRAARG) + 1)
   314  
   315  
   316  
   317  /*===========================================================================
   318    Notes:
   319  
   320    (*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean
   321    value, in a code equivalent to (not cond ? false : true).  (It
   322    produces false and skips the next instruction producing true.)
   323  
   324    (*) Opcodes OP_MMBIN and variants follow each arithmetic and
   325    bitwise opcode. If the operation succeeds, it skips this next
   326    opcode. Otherwise, this opcode calls the corresponding metamethod.
   327  
   328    (*) Opcode OP_TESTSET is used in short-circuit expressions that need
   329    both to jump and to produce a value, such as (a = b or c).
   330  
   331    (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then
   332    'top' is set to last_result+1, so next open instruction (OP_CALL,
   333    OP_RETURN*, OP_SETLIST) may use 'top'.
   334  
   335    (*) In OP_VARARG, if (C == 0) then use actual number of varargs and
   336    set top (like in OP_CALL with C == 0).
   337  
   338    (*) In OP_RETURN, if (B == 0) then return up to 'top'.
   339  
   340    (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always
   341    OP_EXTRAARG.
   342  
   343    (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then
   344    real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the
   345    bits of C).
   346  
   347    (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a
   348    power of 2) plus 1, or zero for size zero. If not k, the array size
   349    is C. Otherwise, the array size is EXTRAARG _ C.
   350  
   351    (*) For comparisons, k specifies what condition the test should accept
   352    (true or false).
   353  
   354    (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped
   355     (the constant is the first operand).
   356  
   357    (*) All 'skips' (pc++) assume that next instruction is a jump.
   358  
   359    (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
   360    function builds upvalues, which may need to be closed. C > 0 means
   361    the function is vararg, so that its 'func' must be corrected before
   362    returning; in this case, (C - 1) is its number of fixed parameters.
   363  
   364    (*) In comparisons with an immediate operand, C signals whether the
   365    original operand was a float. (It must be corrected in case of
   366    metamethods.)
   367  
   368  ===========================================================================*/
   369  
   370  
   371  /*
   372  ** masks for instruction properties. The format is:
   373  ** bits 0-2: op mode
   374  ** bit 3: instruction set register A
   375  ** bit 4: operator is a test (next instruction must be a jump)
   376  ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
   377  ** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
   378  ** bit 7: instruction is an MM instruction (call a metamethod)
   379  */
   380  
   381  LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
   382  
   383  #define getOpMode(m)	(cast(enum OpMode, luaP_opmodes[m] & 7))
   384  #define testAMode(m)	(luaP_opmodes[m] & (1 << 3))
   385  #define testTMode(m)	(luaP_opmodes[m] & (1 << 4))
   386  #define testITMode(m)	(luaP_opmodes[m] & (1 << 5))
   387  #define testOTMode(m)	(luaP_opmodes[m] & (1 << 6))
   388  #define testMMMode(m)	(luaP_opmodes[m] & (1 << 7))
   389  
   390  /* "out top" (set top for next instruction) */
   391  #define isOT(i)  \
   392  	((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
   393            GET_OPCODE(i) == OP_TAILCALL)
   394  
   395  /* "in top" (uses top from previous instruction) */
   396  #define isIT(i)		(testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
   397  
   398  #define opmode(mm,ot,it,t,a,m)  \
   399      (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m))
   400  
   401  
   402  /* number of list items to accumulate before a SETLIST instruction */
   403  #define LFIELDS_PER_FLUSH	50
   404  
   405  #endif